

Section 4.1: The Nature of Energy

> energy

- the ability to cause change
- > different forms of energy
- electrical making toast
- chemical stored in food
- radiant from the sun
- thermal warming of the atmosphere
- > energy plays a role in every activity you do
- > energy is measured in Joules (J)

Kinetic Energy

- > Kinetic Energy (KE)
 - energy a moving object has because of its motion
 - depends on the mass and speed of the object

> Kinetic Energy Equation

KE = ½ mv²

KE = kinetic energy (J)

m = *m*ass (*kg*)

v = speed (m/s)

Potential Energy

- > energy does not always include motion
- Potential Energy (PE)
 - stored energy an object has due to its position
 - Example
 - Apple in a tree due to its height
 - when it falls, potential energy transferred to l
 - Electron excited into a higher orbital
 - when it falls, potential energy transferred light energy

Gravitational Potential Energy

- > Gravitational Potential Energy (GPE)
 - energy stored by objects due to their position above Earth's surface
- depends on distance above Earth's surface and the object's mass
- <u>Gravitational Potential Energy Equation</u> GPE = mgh
- GPE = gravitational potential energy (J)
- m = mass (kg)
- $g = 9.8 m/s^2$ (acceleration due to gravity)
- h = height (m)

Changing GPE

- increasing the height above the ground increases the GPE
- if two objects are at the <u>same</u> height, the one with the larger mass has greater GPE
- > What happens if an object falls?
- amount of potential energy decreases as kinetic energy increases
 - Why?

Work - Change in Energy

- > Work = Change in energy = Δ Energy
 - Whenever an objects energy changes, work is done.
 - If the object does work, it loses energy
 - . If the object has work done on it, it gains energy

Work = Force * Displacement = Δ Energy

> Elastic Potential Energy

- energy stored when an object is compressed or stretched
- Example:
 - stretching a rubber band has stored elastic potential energy
 - when released, the potential energy changes to kinetic
- > Chemical Potential Energy
 - energy stored in chemical bonds
 - Example
 - gasoline
 food

Section 4.2: Conservation of Energy

- > when energy changes form, it is always conserved
- > a light transforms <u>electrical</u> energy to <u>light</u> and <u>thermal</u> energy
- > other devices that make use of electrical energy

Conversions between Kinetic and Potential ME = PE + KE

ME = Mechanical Energy PE = Potential Energy KE= Kinetic Energy

Section 6.1: Temperature and Heat

temperature

- measure of the average kinetic energy of all the particles in an object
- > Kelvin (K)
 - SI unit of temperature
- > a more commonly temperature scale used is
- Celsius (°C)
- 1 K = 1°C
- K=°C+273
- °C=K 273
- > Convert 20°C to K . 20°C + 273 = 293 K

Thermal Energy

> thermal energy

- sum of the kinetic and potential energy of the particles
- is transferred by conduction, convection, and radiation
- > when the temperature of an object increases, the <u>average kinetic energy</u> of the particles in the object increases
- > as a result, the thermal energy increases

Water °C (Celsius) boiling point – 100

- freezing point 0
- > °F (Fahrenheit)
 - boiling point 212
 - freezing point 32
- > K (Kelvin)
 - boiling point 373
 - freezing point 273

Heat

- <u>temperature</u> and <u>heat</u> are not the same, but they are related
- > heat
 - thermal energy that flows from a warmer material to a cooler material
 - its unit is still in Joules (J)
- heat always flows from warmer to cooler materials
- > heat depends on the amount of substance you have

Specific Heat specific heat the amount of thermal energy needed to raise the temperature of 1 kg of a material 1°C specific heat is measured in joules per kilogram Celsius [J/(kg •°C)]

Specific Heat

Specific Heat of Some Common Materials	
Substance	Specific Heat [J/(kg/°C)]
Water	4,184
Wood	1,760
Carbon (graphite)	710
Glass	664
Iron	450

- water has the highest specific heat
 this means that it
- takes a lot of energy to heat up 1 kg of water 1 °C

Changes in Thermal Energy

> the thermal energy of an object changes when heat flows into or out of the object

Q=mc∆T

- Q = change in thermal energy (J)
- m = mass (kg)
- c = specific heat (J/kg °C or J/kg K)
- $\Delta T = T_f T_i$ (change in temperature) (°C or K)

Measuring Specific Heat

> calorimeter

- used to measure specific heat
- a heated sample transfers heat to a known mass of water
- energy absorbed by the water can be calculated by measuring the water's temperature change
- thermal energy released by the sample equals the thermal energy absorbed by the water

Section 6.2: Transferring Thermal Energy

- > thermal energy can be transferred three ways
 - conduction
 - convection
 - radiation

Conduction

- > Conduction
 - transfer of thermal energy by collisions between particles in matter
- > conduction occurs because particles in matter are in constant motion
- > best conductors of heat \rightarrow metals
 - there are electrons that are not bound to individual atoms, but can move easily through the metal

Convection

Convection

- transfer of thermal energy in a fluid by the movement of warmer and cooler fluid from place to place
- > fluid liquid or a gas
- > Convection current
 - transfer heat from warmer to cooler parts of the fluid

Radiation

- > Radiation
- transfer of energy by electromagnetic waves
- > Energy transferred by radiation often is called <u>radiant energy</u>
- > These waves can travel through space even when no matter is present

Radiant Energy and Matter

- > materials that are light-colored reflect more radiant energy
- > dark-colored materials absorb more radiant energy
- > when radiant energy is absorbed by a material, the <u>thermal energy</u> of the material increases
- ➤ insulator
- a material in which heat flows slowly
- wood, plastic, fiberglass, air