

Types of Friction

static friction

Friction between two surfaces that are not moving past each other

sliding friction force that opposes the motion of two surfaces sliding past each other

rolling friction

friction between a rolling object and the surface it rolls on

Air Resistance

o air resistance

opposes the motion of objects that move through the air

- When an object falls toward Earth, it is pulled downward by the force of gravity (weight).
- Air resistance depends on an object's

Terminal Velocity

- terminal velocity
- forces on a falling object are balanced (gravity and air resistance) and the object falls with constant speed
 As an object falls, the downward force of gravity (weight) causes the object to accelerate.
- As an object falls faster, the upward force of air resistance increases.
- This causes the net force on a sky diver to decrease as the sky diver falls.

Terminal Velocity

- When the upward air resistance force becomes large enough to balance the downward force of gravity the net force equals zero
- The forces are balanced.
- If the net force equals zero, the acceleration equals zero.
- If acceleration is zero the object falls with a constant velocity called the terminal

Terminal Velocity

- The terminal velocity is the highest speed a falling object will reach without an additional external force.
- The terminal velocity like air resistance is depends on the size, shape, and mass of a falling object.

Section 3.2: Gravity

- <u>gravity</u>
 - an attractive force between any two objects that depends on the masses of the objects and the distance between them

The Law of Universal Gravitation

 enables the force of gravity to be calculated between any two objects if their masses and the distance between them is known

$$F = G \frac{m_1 m_2}{d^2}$$

The Range of Gravity

- the gravitational force between them never completely goes to zero
 - gravity is called a <u>long-range force</u>

Earth's Gravitational Acceleration

- free fall
 - when all forces except gravity acting on a falling object can be ignored
- known as acceleration of gravity (g)
 - 9.8 m/s²

Weight

• <u>weight</u>

- the gravitational force exerted on an object
- the weight of an object on Earth is equal to the force of Earth' s gravity on the object (Newton's 2nd Law)
- SO,

- F_w = weight (N)
- m = mass (kg)
- g = acceleration due to gravity (9.8 m/s

Weight and Mass

- weight
- a force
 - can change depending on the gravitational force on the object
- mass
 - a measure of the amount of matter an object contains
- weight increases as mass increases

Projectile Motion

 Earth's gravity causes projectiles to follow a curved path

<u>projectile</u>

- anything that is thrown or shot through the air
- One forces act on a ball in the air
 - Gravity
 - This explains the vertical motion of the object
 Horizontal motion is explained by Inertia which is not a face.

Centripetal Force

- <u>centripetal acceleration</u>
 - acceleration toward the center of a curved or circular path
- when a ball has centripetal acceleration, the direction of the net force on the ball also must be toward the center of the curved path (Newton's 2nd Law)
- centripetal force
 - the net force exerted toward the center of a curved path

Centripetal Force

- Centripetal Force increases with:
 - an increase in velocity
 - an increase in the mass of the object
 - a decrease in the radius of the object

Centripetal Force and Traction

- a car rounding a curve on a highway has centripetal force acting on the car to keep it moving in a curved path
 - the centripetal force is the frictional force, or the traction, between the tires and the road surface

Gravity Can be a Centripetal Force

 Earth's gravity exerts a centripetal force on the Moon that keeps it moving in a nearly circular orbit

Section 3.3: The Third Law of Motion

- Newton's third law of motion
 - when one object exerts a force on a second object, the second one exerts a force on the first that is equal in strength and opposite in direction

Action and Reaction

- when you jump on a trampoline, you exert a downward force on the trampoline
- the trampoline exerts an equal force upward, sending you high into the air

Action and Reaction forces don't cancel

- action and reaction forces act on different objects
- even though the forces are equal, they are not balanced because they act on different objects

Rocket Propulsion

- burning fuel in a rocket produces hot gases.
- the rocket engine exerts a force on these gases and causes them to escape out the back of the rocket
- the gases exert a force on the rocket and push it forward

Momentum

- momentum
 - property of a moving object that equals its mass times its velocity
- So,
- p = 1
- p = momentum (kg · m/s)
- o m = mass (kg)
- v = velocity (m/s)

Law of Conservation of Momentum

- Momentum can be transferred from one object to another.
 - momentum of an object doesn't change unless its mass, velocity, or both change.
- The <u>law of conservation of momentum</u> states that if a group of objects exerts forces only on each other, their total momentum doesn' t change.

When Objects Collide

- The results of a collision depend on the momentum of each object.
- When the first puck hits the second puck from behind, it gives the second puck momentum in the same direction.

When Objects Collide • If the pucks are speeding toward each other with the same speed, the total momentum is zero.