Acids, Bases and Salts

Chapter 23

Section 23.1: Acids and Bases

<u>acid</u>

- substance that produces hydrogen ions in a water solution (H+ \rightarrow hydrogen ion)
- usually start with an H
- HCl, H₂SO₄, HBr, HClO₂, HNO₃, H₃PO₄
- exception \rightarrow CH₃CO₂H (acetic acid)

hydronium ion H_3O^+ forms as a result of H and H_2O combining

Properties of Acids

tastes sour

corrosive (burns) \rightarrow strong acids acids react with <u>indicators</u> and change color

some acids react strong with metals and form <u>hydrogen gas</u>

 $\text{Zn}(s) + 2\text{HCl}(\text{aq}) \rightarrow \text{H}_2(g) + \text{ZnCl}_2(\text{aq})$

<u>indicator</u>

- organic compound that changes color in acids and bases
- red cabbage
- Examples
 - Phenolpthalein
 - colorless when acidic; pink when basic
 - Litmus Paper
 - red when **acidic**; blue when **basic**

<u>bases</u>

- substance that forms hydroxide ions in a water solution and accept H⁺ ions from acids
- usually end with an OH
- NaOH, $Ca(OH)_2$, $Ca(OH)_2$, KOH
- exception \rightarrow NH₃ (ammonia)

 $OH \rightarrow hydroxide$ ion

Properties of Bases

slippery bitter tasting corrosive \rightarrow strong bases some bases react with <u>indicators</u> and change color

Common Acids and Bases

Acids

citricacid-fruits Sulfuricacid-batteries hydrochloricacid-belly aceticacid-vinegar Carbonicacid-clubsoda Bases Ommonia Cleaners Da King Soda Magnesiumhydroxida-artacids

Solutions of Acids and Bases

the acid <u>dissociates</u>—or separates—into ions

the hydrogen atom combines with a water molecule to form hydronium ions (H_3O^+)

the base dissociates into a positive ion and a negative ion—a hydroxide ion (OH⁻) during base dissociation, water molecules do not combine with the ions formed

Ammonia

Ammonia is a base that does not contain OH

the ammonia molecule attracts a hydrogen ion from a water molecule, forming an ammonium ion (NH_4^+) this leaves a hydroxide ion (OH⁻)

Electrolytes

Acids and bases are electrolytes. • Why?????

They form ions when they dissolve in water. • Strong acids/bases are better electrolytes than weak acids/bases.

Section 23.2: Strength of Acids and Bases

a <u>strong acid</u> dissociates almost completely into ions * 10w pH closer to 0

 $\operatorname{HCl}(g) + \operatorname{H_2O}(l) \longrightarrow \operatorname{H_3O^+}(aq) + \operatorname{Cl}(aq)$

a <u>weak acid</u> is one where only a small fraction of the molecules dissolve $\overset{\text{HPLCloser}}{\overset{\text{HPLCloser}}}{\overset{\text{HPLCloser}}}{\overset{\overset{\text{HPLCloser}}}{\overset{\overset{\text{HPLCloser}}}{\overset{\overset{\text{HPLCloser}}}{\overset{\overset{\text{HPLCloser}}}{\overset{\overset{\text{HPLCloser}}}{\overset{\overset{\text{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}{\overset{\overset{HPLCloser}}}}{\overset{\overset{HPLCloser$

 $CH_{3}COOH(l) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + CH_{3}COO^{-}(aq)$

pН

<u>pH scale</u>

- pH measures how <u>acidic</u> or <u>basic</u> a substance is
 a scale ranging from 0 to 14 has been devised
 based on a log system of base 10
- -1 times the base logarithm of the H_3O^+ concentration
- each one unit change in pH represents a 10 fold change in the concentration of H_3O^+ ions pH drops from 4 to 3 means the concentration of H_3O^+ ions increase by a factor of 10 – from 10⁻⁴ to 10⁻³

pН

Acidic

- below pH of 7
- the lower the pH, the more H^+ ions in solution
- Base
- above pH of 7
- the higher the pH, the more OH⁻ ions in solution Salt_____
- about pH of 7