
Chapter 21 Chemical Reactions

The Father of Modern Chemistry

- French chemist **Antoine Lavoisier**
 - · the father of modern chemistry
 - for his explanation of the conservation of mass and for describing a common type of chemical reaction called <u>combustion</u>
 - · law of conservation of mass
 - total mass of the products always equals the total mass of the reactants

Writing Equations

- chemical equation
 - shorthand method to describe a chemical reaction using chemical formulas and other symbols

 $\frac{\text{Reactants}}{\text{HgO(s)} \rightarrow \text{Hg(I)} + \text{O}_2(g)}$

Writing Equations

- (aq) aqueous (substance dissolved in water)
- (s)- solid
- (I) liquid
- (g) gas

<u>coefficients</u> – the numbers to the left of the formulas used to help balance the equation

Section 21.2: Chemical Equations

- balanced chemical equations
 - has the same number of atoms of each element on both sides of the equation

Examples

• Use coefficients to balance the following equations.

$$NiCl_2(aq) + NaOH(aq) \rightarrow Ni(OH)_2(s) + NaCl(aq)$$
 $HgO(s) \rightarrow Hg(l) + O_2(g)$
 $Mg + O_2 \rightarrow MgO$
 $Fe + Cl_2 \rightarrow FeCl_3$

 $Fe + O_2 \rightarrow FeO$

$$Al + CuO \Rightarrow Al_2O_3 + Cu$$

$$C_3H_8 + O_2 \Rightarrow CO_2 + H_2O$$

$$H_2 + I_2 \Rightarrow HI$$

$$Zn + HCl \Rightarrow ZnCl_2 + H_2$$

$$Pb(NO_3)_2 + AlCl_3 \Rightarrow PbCl_2 + Al(NO_3)_3$$

$$C_3H_6O_3 + O_2 \Rightarrow CO_2 + H_2O$$

$$H_{2}S + SO_{2} \Rightarrow S + H_{2}O$$

$$K_{2}O + H_{2}O \Rightarrow KOH$$

$$Li + H_{2}O \Rightarrow LiOH + H_{2}$$

$$H_{2} + O_{2} \Rightarrow H_{2}O$$

$$Mg + O_{2} \Rightarrow MgO$$

$$C_{2}H_{2} + O_{2} \Rightarrow CO_{2} + H_{2}O$$

$$Al(OH)_{2} \Rightarrow Al_{2}O_{2} + H_{2}O$$

21.3: Classifying Chemical Reactions

- five main types of chemical reactions
 - combustion
 - synthesis
 - decomposition
 - single-displacement
 - double-displacement

Combustion Reactions

- occurs when a substance reacts with oxygen to produce energy in the form of heat and light
- main reactants \rightarrow O₂ and C_xH_x (hydrocarbon)
- products → H₂O and CO₂
- Example
 - $CH_4(g) + O_2(g) \rightarrow H_2O(g) + CO_2(g)$

Synthesis (Combination) Reactions

• two or more substances combine to form another substance

$$A + B \rightarrow AB$$

- Example:
 - $Mg(s) + O_2(g) \rightarrow MgO(s)$

Decomposition Reactions

 one substance breaks down, or decomposes, into two or more substances

$$AB \rightarrow A + B$$

- Example:
 - $H_2O_2(I) \to O_2(g) + H_2O(I)$

Single Displacement Reaction

• when one element replaces another element in a compound

$$A + BC \rightarrow AC + B$$

- Example
 - $Zn(s) + HCl(I) \rightarrow ZnCl_2(I) + H_2(g)$

Activity Series

- a list of metals according to how reactive they are
 a metal will replace any other metal that is less
- a metal will replace any other metal that is less active

Double Displacement Reaction

- when the positive ion of one compound replaces the positive ion of the other to form a new compound
- a precipitate is usually formed

- Example:
 - $AgNO_3(aq) + KCl(aq) \rightarrow KNO_3(aq) + AgCl(s)$

Section 21.4: Chemical Reactions and Energy

- all chemical reactions release or absorb energy
- this energy can take many forms, such as heat, light, sound, or electricity
- · chemical bonds are the source of energy

More energy out

- exergonic reactions
 - chemical reactions that release energy
- cracking a glow stick is an example of an exergonic reaction

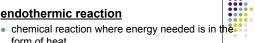
• exothermic reaction

· a chemical reaction that releases energy in the form of heat

Example

burning wood

More energy in



• endergonic reactions

- chemical reaction that requires more energy to break bonds
- energy absorbed could be in the form of heat, light or electricity

• endothermic reaction

freeze water

form of heat • some reactions are so endothermic they can

Catalysts and Inhibitors

• catalyst

- substance that speeds up a chemical reaction without being permanently changed itself
- when you add a catalyst to a reaction, the mass of the product that is formed remains the same

• sometimes we need to prevent reactions from occurring

• inhibitors

used to slow down a chemical reaction