Chapter 20

Chemical Bonds

Stability in Bonding

matter around you is in the form of uncombined elements

oxygen, copper

under the right conditions, they will form compounds

Examples

- Statue of Liberty copper
 turn green, no luster (Copper Sulfate)
 Car bumper iron
 turns red, no luster (Iron Oxide)

New Properties

- elements combine to create a new substance with **<u>new properties</u>**
- Example
 - Sodium and Chlorine \rightarrow Sodium Chloride • Na – soft solid, highly reactive with water, luster • Cl – green gas, poisonous
 - NaCl white crystalline solid, not poisonous

Formulas

chemical formula

- chemical shorthand that uses symbols to tell what elements are in a compound and their
- Example: H₂O (water)
- 2 hydrogen atoms
 1 oxygen atom
- <u>subscript</u> tells how many atoms of each element

Atomic Stability

- the electric forces between oppositely charged electrons and protons hold atoms and molecules together
 - this force (attraction) causes compounds to form

Chemical Stability

noble gasses <u>rarely</u> form compounds because they are <u>chemically stable</u>

- 8 valence electrons (octet rule) except for Helium, only has 2
- elements will gain, lose, or share electrons to attain this stability

Stability is Reached!!

- when atoms gain, lose, or share electrons, an <u>attraction forms</u> between the atoms, pulling them together to form a compound
- Metals lose electrons
- Nonmetal gain electrons

chemical bond

- force that holds atoms together in a compound
- 2 types
- ionic bond (transfer electrons) covalent bond (share electrons)

Ionic Bonding

<u>ion</u>

- charged particle that has either more or fewer electrons than protons
- <u>cation</u> positively charged ion (metals)
- anion negatively charged ion (nonmetals) it is the electric forces between
- oppositely charged particles, such as ions, that hold compounds together

A Bond Forms

- lets go back to our example of sodium and chlorine
- Na 1 e⁻ in its outer energy level (group 1A)
 Cl 7 e⁻ in its outer energy level (group 7A) metals lose, nonmetals gain
 - Na becomes Na⁺
- has one more proton than electrons Cl becomes Cl-
- has one more electron than protons

A Bond Forms

- neutral charge
- the positive and negative charges of the ions
- cancel each other known as <u>electrically neutral</u>

Na⁺C⁺

Ionic Bond

Ionic bond

- attraction between oppositely charged ions in an ionic compound
- transfer of electrons takes place between a <u>metal</u> and a <u>nonmetal</u>

formula unit

smallest sample of an ionic compound

Writing Formulas and Naming **Binary Ionic Compounds**

binary compound

is composed of two elements

oxidation number

- the relationship between an element' s position on the periodic table and the number of electrons it gains or loses
- metals (+, equals the group number)
- nonmetals (-, equals how many more they need to get 8)

some metals may have more than one oxidation number we use Roman Numerals to indicate which charge is being used • iron (II) has an oxidation number of 2+

Special lons		
Name	Oxidation Number	
Copper (I)	1+	
Copper (II)	2+	
Iron (II)	2+	
Iron (III)	3+	
Chromium (II)	2+	
Chromium (III)	3+	
Lead (II)	2+	
Lead (IV)	4+	

some transition metals only have one oxidation number

- Zinc (Zn) is always 2+
- Silver (Ag) is always 1+

Names of Anions

- when nonmetals gain electrons, they become negatively charged (more
- electrons) when they become an anion, their
- an anion, their name acquires an *–ide* suffix _____

nonmetalanioncarboncarbidenitrogennitridephosphorusphosphideoxygenoxidesulfursulfidefluorinefluoride

chloride

bromide

iodide

chlorine

bromine iodine

Writing Formulas using Oxidation Numbers

write the symbol for both the metal and nonmetal

- write the oxidation number for each element as a superscript
- cross and drop the **<u>number only</u>** (not the charge)
- if you can reduce the ratio, do so $* \text{ lead (IV) oxide } \rightarrow \text{Pb}_2O_4 \text{ reduces to PbO}_2$

Practice

- 1. calcium fluoride
- 2. copper (II) oxide
- 3. silver bromide

PRACTICE!!!

- Write the formulas for the following
 - compounds.
- potassium iodide
 iron (II) chloride
- strontium bromide
- lead (IV) sulfide
- aluminum nitride

Compounds with Complex Ions

baking soda has the formula $NaHCO_3$ this is an ionic compound that is <u>not</u> binary

some compounds are composed of more than two elements

• they contain polyatomic ions

polyatomic ion

- a positively or negatively charged, covalently bonded group of atoms
- polyatomic ions as a whole contains two or more elements

ammonium	(NH ₄)+	
nitrate	(NO ₃) ⁻	
hydroxide	(OH) [_]	
carbonate	(CO ₃) ²⁻	
sulfate	(SO ₄) ²⁻	
phosphate	(PO ₄) ³⁻	

Writing formulas with polyatomic ions

- Follow the same rules for binary ionic compounds.
- When you cross and drop, if there is more than one molecule of the polyatomic ion, it is written in <u>parentheses</u>.
- Example
 - aluminum sulfate
 - Barium hydroxide

Naming Ionic Compounds

- i. sodium nitrate
- 2. calcium phosphate
- 3. potassium oxide
- 4. nickel (II) carbonate
- 5. copper (I) chloride
- 6. zinc sulfide
- <u>7. lead (IV)</u> nitrate
- 8. lithium hydride

Writing Names from Formulas for Ionic Compounds

Write the name of the positive ion.

- metal or polyatomic ion (ammonium) If it is a metal that has more than one oxidation number, you put the number in parentheses as
- a Roman Numeral. any element other than main groups 1-3, Zn, and Ag
- Write the name of the negative ion.
- non-metal (with –ide suffix) or polyatomic ion

Determining the Charge of the metal ion (cation)

Ionic compounds

- cation is always first, anion is second Determine the charge of the anion in the compound.
- Cu**SO**₄²-
- Using the charge of the anion, determine the charge of the cation to balance the charge to 0 (make it neutral).
- make the compound neutral?

in order to balance to zero, the charge of copper must be 2+ x + (-2) = 0

- $\mathbf{x} = 2$
- CuSO₄ copper (II) sulfate
- FeCl₃

Co₂O₃

Practice Write the names for the following ionic compounds below. $MgCl_2$ CuBr₂ Na_2SO_4 Co₂O₃ KNO₃

- Cs_3PO_4
- ZnS

Practice –Naming and Formulas

- Al(OH)₃
- Cu_2O_3 ZnSO₄
- Rb_2S
- CsĪ
- $Mg_3(PO_4)_2$
- Calcium bromide
- Tin (IV) oxide
- Barium phosphide
- Potassium nitride
- Nickel (II) fluoride Magnesium oxide

Compounds with added water

- some ionic compounds have water molecules as part of their structure
- these compounds are called <u>hydrates</u>
- <u>hydrate</u>

• a compound that has water chemically attached to its ions and written into its chemical formula

Example

© Cobalt (II) Chloride

- CoCl₂
- Anhydrous state (no water) ightarrow blue
- ${}^{_\circ}$ Hydrated state (with water) \rightarrow red

Cobalt (II) Chloride <u>Hexa</u>hydrate CoCl₂ • 6H₂O

• Use the Greek prefixes to tell how many waters

Covalent Bonding

- some nonmetals will be unlikely to gain or lose electrons
- Example: Group 4 elements
- 4 electrons in outer energy level (would have to gain or lose 4 to be stable)
- too much energy is needed
- they share electrons instead

Covalent Bond

<u>covalent bond</u>

- attraction formed between atoms when they share electrons
- <u>sharing</u> of electrons between 2 or more nonmetals

molecule

 a neutral particle that forms as a result of electron sharing (smallest sample of a covalent compound)

Writing Formulas for Binary Covalent Compounds

write the symbol for each element and the appropriate number designated by the prefix as a subscript

• Example:

- odihydrogen monoxide
- o carbon tetrachloride

Practice Writing Formulas

- carbon dioxide
- phosphorus trichloride
- nitrogen trihydride
- diphosphorus pentoxide
- oxygen difluoride

Naming Binary Covalent Compounds

- Write the name of the first element with the appropriate prefix
- (**never** use mono- with the first element) Write the name of the second element with the appropriate prefix and –ide suffix

Naming Binary Covalent Compounds
NO
N ₂ O
NO ₂
N ₂ O ₅

Single Covalent Bond

a single covalent bond is made up of 2 shared electrons Example fluorine (F_2)

Multiple Bonds

- a covalent bond also can contain more than one pair of electrons
 Example
 - Nitrogen (N_2)

Multiple Bonds

- each shared pair of electrons represents a bond
- two pairs of electrons represents two bonds or a <u>double bond (4 electrons)</u>
- three pairs of electrons represents three bonds or a triple bond (6 electrons)

Unequal Sharing

- electrons are not always shared equally between atoms in a covalent bond
- the strength of the attraction of each atom to its electrons is related to:
- the size of the atom
- the <u>charge of the nucleus</u>
- the total number of electrons the atom contains

Unequal Sharing

 the electrons shared in HCl will spend more time near the chlorine atom than near the hydrogen atom

(partial negative charge) δ+ δ+ (partial negative charge) δδ+

Tug – of - War

- think of the bond as the rope in a tug-ofwar
 - the shared electrons as the knot in the center of the rope
- each atom in the molecule attracts the electrons that they share

one example of this unequal sharing is found in a molecule one example of this unequal sharing is found in a molecule

of hydrogen chloride, hydrogen atoms do HCl

Polar or Nonpolar

- the charge is balanced but not equally distributed
- this type of molecule is called polar

polar molecule

 has a slightly positive end and a slightly negative end although the overall molecule is neutral water is an example of a polar molecule

Polar or Nonpolar

nonpolar molecule

- electrons are shared equally in bonds
 Such a molecule does not have oppositely charge ends
- this is true of molecules made from two identical atoms or molecules that are symmetric, such as CCl_4 (carbon tetrachloride)