

History

- Henri Becquerel
- 1896
- left uranium salt in a drawer with a photographic plate
 when he developed the plate, he found an outline of
- the clumps of the uranium salt • he hypothesized that the uranium salt emitted some
- ne hypothesized that the uranium salt emitted some sort of energy
- Marie and Pierre Curie
- students of Becquerel
- $^\circ$ 2 years later, they discovered Po and Ra while studying uranium ore "pitch blende"

Marie Curie's notebook is still radioactive today!

when the strong force is not large enough to hold a nucleus together tightly, the nucleus can decay and give off matter and energy

- stable nucleus
- stays together permanently
- unstable nuclei
 - radioactive!!!!
- $^{\circ}$ nucleus does not stay together; emits matter and energy

radioactivity the process of nuclear decay

- elements after #83 are radioactive
- all elements after #92 are synthetic and decay soon after they are created

Write beta decay equations for the following nuclides. ${}_{2}^{6}He$ ${}_{11}^{24}Na$ ${}_{201}^{201}Au$ ${}_{26}^{52}Fe$ ${}_{19}^{42}K$

Decay Series for ${}^{238}_{92}U \rightarrow \alpha\beta\beta\alpha\alpha\alpha\alpha\alpha\beta\beta\alpha\beta\alpha$ ${}^{238}_{92}U \xrightarrow{\alpha}{}^{234}_{90}Th \xrightarrow{\beta}{}^{234}_{91}Pa \xrightarrow{\beta}{}^{234}_{92}U \xrightarrow{\alpha}{}^{230}_{90}Th \xrightarrow{\alpha}$ ${}^{226}_{88}Ra \xrightarrow{\alpha}{}^{222}_{86}Rn \xrightarrow{\alpha}{}^{218}_{84}Po \xrightarrow{\alpha}{}^{214}_{82}Pb \xrightarrow{\beta}{}^{214}_{83}Bi \xrightarrow{\beta}$ ${}^{214}_{84}Po \xrightarrow{\alpha}{}^{210}_{82}Pb \xrightarrow{\beta}{}^{210}_{83}Bi \xrightarrow{\beta}{}^{210}_{84}Po \xrightarrow{\alpha}{}^{206}_{82}Pb$

Half-Life half-life Sample Half-Lives the amount of time it takes for Half-Life Isotope half the nuclei in a sample of the isotope to decay ³H 12.3 years • the nucleus left after the ²¹²₈₂Pb 10.6 hr isotope decays is called the daughter nucleus ¹⁴₆C 5,730 years some half-lives are seconds, 211 84Po 0.5 s others are millions of years 235 92 7.04 imes 10⁸ years 8.04 days $\frac{131}{53}$

Examples

 If the half life of iodine 131 is 8 days, how much of a 5g sample is left after 32 days?

• How much of a 100 g sample of gold 198 is left after 8.10 days if its half life is 2.7 days?

Section 18.3: Detecting Radioactivity

- tools used to detect radiation
 - Cloud chamber
 - used to detect alpha or beta particle radiation
 - Electroscope
 - given a negative charge, its leaves repel each other and spread apart
 - Geiger counter
 - a device that measures the amount of radiation by producing an electric current when it detects a charged particle

Types of Reactors

- Boiling Water Reactor (BWR)
 - Water boils in reactor vessel
 - Steam to turbine
 - Susquehanna plant and others
- Pressurized Water Reactor (PWR)
 - Hot water sent to steam generator first
 - · Submarines, Three Mile Island, and others

Nuclear Power Plants Boiling Water Reactor (BWR)

- controlled fission reactions release heat energy
- 2. heat energy is used to boil water
- 3. boiling water creates steam
- 4. steam is used to turn the turbines
- 5. spinning turbines creates electricity
- http://www.pplweb.com/NR/rdonlyres/ 7C32A442-3C42-4978-9BE4-7128585258E0/ 0/nuclear.swf
- http://www.pplweb.com/susquehanna+energy +information+center/nuclear+energy

Three Mile Island (TMI) Unit 2 (PVVR Reactor) March 28, 1979 most serious accident in the USA A decrease in the cooling fluid due to a valve malfunction in the pressurizer caused a partial meltdown of the reactor core. did not cause any deaths or injury to workers or nearby community members

Chernobyl (RBMK Reactor) April 26, 1986 Vorst accident in nuclear history RBMK (Graphite Moderated Vater Cooled) A combination of human error and the loss of water in the core caused the reactor core to melt, a build-up of gases, and an explosion releasing radioactive particulates into the air.

Bombs Away!! Fission or Fusion?

atomic bomb

- fission chain reaction emitting 100 million to several hundred million volts of energy
- a single blow from a neutron to U-235 is all it takes to start the chain reaction
- Plutonium and Uranium can be used as "fuel" for these reactions

