CHAPTER 16

Solids, Liquids and Gases

SECTION 16.1: KINETIC THEORY

- Kinetic Theory of Matter • All matter is composed of tiny particles in constant motion. • The higher the temperature, the faster the motion. The state of matter changes as temperature changes Solid \rightarrow Liquid \rightarrow Gas K.E. increases \rightarrow

STATES OF MATTER

- physical property
- describes matter as it is without changing it · color, texture, density, smell, taste, phose

four states: solid, liquid, gas, plasma

SOLIDS

definite shape, definite volume

- particles tightly packed
- movement limited to vibration

2 types

- Crystalline
 - Regular repeated particle pattern Examples: Quartz, Salt
- Amorphous
- No pattern Can lose its shape

- Particles can flow (slowly)
 Super cooled liquids
 Examples: Clay, Butter, Glass

LIQUIDS

- definite volume, no definite shape
- particles close, but flow around each other (fluid)

no set particle pattern

Melting point

- the temperature at which a solid begins to liquefy
- Heat of fusion
 - the amount of energy required to change a substance from the solid phase to the liquid phase at its melting point

Viscosity

- property of a liquid that describes its resistance to flow
- Ex: Honey high viscosity Milk – low viscosity

GAS

 indefinite shape and volume
 both change to fill container (fluid)
 compressible because of space between particles
 greatest kinetic energy of 3

phases

vaporization

- point at which the liquid breaks free of all attractive forces and changes into a gas
- 2 ways
 - 1.evaporation (happens at the surface of the liquid)
 - 2.boiling (throughout entire substance)

Boiling point

• the temperature at which the pressure of the vapor in the liquid is equal to the external pressure acting on the surface of the liquid

Heat of vaporization

 the amount of energy required for the liquid at its boiling point to become a gas

Gas particles are moving **so fast** that they overcome the attraction forces between them.

Diffusion

 is the spreading of particles throughout a given volume until they are uniformly distributed

PLASMA

Plasma

- matter consisting of positively and negatively charged particles
- overall charge is neutral (pos. = neg.)
- found in stars, the Sun, lightning bolts, neon and fluorescent tubes and auroras

THERMAL EXPANSION

- If heat energy is added to matter, • <u>average K.E. increases</u> causing particles to collide more, moving particles further apart (increasing volume)
- Example: Bridges, concrete (expansion joints), thermometers, hotair balloons

PHASE CHANGES

- during phase change, temperature is always constant!!!
- <u>melting</u> → solid to a liquid <u>vaporization</u> → liquid to a gas <u>condensation</u> → gas to a liquid <u>freezing</u> → liquid to a solid <u>sublimation</u> → solid to a gas

- dry ice (frozen CO_2), iodine deposition \rightarrow gas to a solid frost, snow

SECTION 16.2: PROPERTIES OF FLUIDS

- Buoyancy
- Archimedes' Principle
- Pascal's Principle
- Bernoulli's Principle

BUOYANCY

<u>buoyancy</u>

- the ability of a fluid (a liquid or a gas) to exert an upward force on an object immersed in it
- Archimedes Principle
 - the amount of weight lost by an object in water is equal to the weight of the water displaced
 - this is the amount of <u>buoyant force</u> on an object

★
 If the buoyant force is <u>less</u> than the object's weight, the object will sink.
 ★ If the buoyant force is <u>equal to or</u> ★
 <u>greater than</u> the object's weight, the object will float.

EXAMPLE

If an object weighs 25 N and is put in a container of water displacing 10 N of water, the buoyant force on the object is 10 N, making it weigh only 15 N.

- If an object displaces <u>equal or</u> <u>more weight</u> in water than its own weight, <u>it floats</u>.
- If it displaces <u>less weight</u>in water than its own weight, <u>**it**</u> <u>sinks</u>.
- If an object has a greater density than the fluid it is in, it will sink.
- If an object has a density that is less than the object it is in, it will float.

PASCAL'S PRINCIPLE

the pressure applied to a fluid is transmitted unchanged throughout the fluid

<u>pressure</u>

- force exerted per unit area **Examples**
- squeezing a tube of toothpaste

According to Pascal's principle, pressure is transferred unchanged; therefore, a <u>greater</u> <u>force</u> is created over a <u>greater</u> <u>area.</u>

A hydraulic lift is used to lift a heavy machine that is pushing down on a 2.8 m² piston with a force of 3,700 N. What force needs to be exerted on a 0.072 m² piston to lift the machine?

BERNOULLI'S PRINCIPLE Speed

- as the velocity of a fluid increases, the pressure exerted by the fluid decreases
 - -explains how planes fly (increased speed creates <u>lift</u>
 - explain why birds fly in a V blowing across the top of paper

SECTION 16.3: BEHAVIOR OF GASES

- Gases exert forces on everything (constant motion)
- The larger the area, the greater the force

Pressure is the amount of force exerted per unit of area P = FA

Tool – Barometer

 invented by Evangelista Torricelli factors that affect pressure of a gas: volume, temperature, amount of gas

Different Units of Pressure

atm = atmosphere

- torr = Torr
- mmHg = millimeters of mercury
- Pa = pascal
- ⊚kPa = kilopascal
- 1 atm = 760 torr = 760 mmHg
- = 101,325 Pa = 101.325 kPa

BOYLE'S LAW ROBERT BOYLE (1662)

As volume <u>decreases</u> to $\frac{1}{2}$ the original, pressure <u>increases</u> 2x's

(pressure decreases, volume increases) (pressure increases, volume decreases)

e temperature held steady e amount of gas the same

$P_1V_1 = P_2V_2$

Nitrogen gas occupies of volume of 680 L at a pressure of 0.8 atm. What is the volume of the gas at pressure of 1 atm?

CHARLES' LAW

JACQUES CHARLES (1760)

 If the temperature of a gas increases, the volume also increases
 Temperature is in KEIVIN!!!!

K = °C + 273(temperature increases, volume increases) (temperature decreases, volume decreases)

Pressure is constant At fixed amount of gas

•What would be the resulting volume of a 2.0-L balloon at 25.0°C that was placed in a container of ice water at 3.0°C?