

Temperature, Heat, and Expansion	Conceptual Physics
21.6 Specific Heat Capacity	
Different substances have different capacent network of the second state of the second	cities for storing
 A pot of water on a stove might required to be heated from room temperature temperature. 	uire 15 minutes e to its boiling
 An equal mass of iron on the same rise through the same temperature about 2 minutes. 	flame would range in only
 For silver, the time would be less th 	an a minute.
24	$\triangleleft \triangleright$

E

i

21 Temperature, Heat, and Expansion	Conceptual Physics	
21.6 Specific Heat Capacity		
A material requires a specific amount of I temperature of a given mass a specified The specific heat capacity of a material heat required to raise the temperature of	heat to raise the number of degrees. I is the quantity of 1 gram by 1 degree.	
PEARON		

States and a state of the		
Table 21.1	Specific He	eat Capacitie
Material	(J/g°C)	(cal/g°C)
Water	4.186	1.00
Aluminum	0.900	0.215
Clay	1.4	0.33
Copper	0.386	0.092
Lead	0.128	0.031
Olive Oil	1.97	0.471
Silver	0.23	0.056
Steel (iron)	0.448	0.107

1 Temperature, Heat, and Expansion

21.6 Specific Heat Capacity

Absorbed energy can affect substances in different ways.

• Absorbed energy that increases the translational speed of molecules is responsible for increases in temperature.

Conceptual Physics

41

- Temperature is a measure only of the kinetic energy of translational motion.
- Absorbed energy may also increase the rotation of molecules, increase the internal vibrations within molecules, or stretch intermolecular bonds and be stored as potential energy.

21 Temperature, Heat, and Expansion Conceptual Physics 21.7 The High Specific Heat Capacity of Water

Climate of America

Climates differ on the east and west coasts of North America. The prevailing winds in the latitudes of North America are westerly.

On the west coast, air moves from the Pacific Ocean to the land.

• In winter, the water warms the air that moves over it and warms the western coastal regions of North America.

4

• In summer, the water cools the air and the western coastal regions are cooled.

Temperature, Heat, and Expansion Conceptual Physics

21.8 Thermal Expansion

Expansion Joints

If sidewalks and paving were laid down in one continuous piece, cracks would appear due to expansion and contraction. To prevent this, the surface is laid in small sections, separated by a small gap that is filled in with a substance such as tar. On a hot summer day, expansion often squeezes this material out of the joints.

4

21 Temper	ature, Heat, and Expansion	Conceptual Physics
Asses	sment Questions	
1. Tem a. b. c. d.	perature is generally proportional to a su thermal energy. vibrational kinetic energy. average translational kinetic energy. rotational kinetic energy.	ubstance's
Answer:	c	
PEARION		

21 Temperature, Heat, and Expansion Con	ceptual Physics
Assessment Questions	1
 Heat is simply another word for a. temperature. b. thermal energy. c. thermal energy that flows from hot to cold. d. radiant energy. Answer: C 	
MANDA	

21 Temperature, Heat, and Expansion	Conceptual Physics
Assessment Questions	
 Which of these temperatures is likely when a 20°C is mixed with water at 28°C? a. 18°C b. 22°C c. 30°C d. 38°C 	a container of water at
Answer: B	
PERSON	

	ature, Heat, and Expansion	Conceptual Physics	
Assessment Questions			
 4. If you wanted to raise the internal energy of a bucket of 20°C water, you could a. place ice in the bucket. b. place it in a refrigerator. c. add 25°C water in the bucket. d. let the bucket stand at room temperature if the room is less than 20°C. 			
Answer: C			

21 Tempera	ature, Heat, and Expansion	Conceptual Physics	
Assessment Questions			
6. Hot the a. b. c. d.	sand cools off faster at night than plants specific heat capacity of sand is less than that of plants. more than that of plants. likely the same as that of plants. not enough information to answer	and vegetation. Then,	
Answer: A			
PEARSON		\triangleleft	

21 Tempera	ature, Heat, and Expansion	Conceptual Physics		
Asses	Assessment Questions			
7. Tos isto a. b. c. d.	ay that water has a high specific heat ca say that water requires little energy in order to increas gives off a lot of energy in cooling. absorbs little energy for a small increas cools at a rapid rate.	pacity e in temperature. e in temperature.		
Answer: B				

21 Te	mpera	ature, Heat, and Expansion	Conceptual Physics
As	Assessment Questions		
9.	Micı a. b. c. d.	roscopic slush in water tends to make the denser. less dense. slipperier. warmer.	9 water
PEARSON			

