Name:	Date:
Mr. Croom's Physics	Chapter 9: Solids and Fluids

Bernoulli's Principle

1.	A 17-cm-radius air duct is used to replenish the air of a nest 9.2 m x 5.0 m x 4.5 m every 10 min. How fast does the air flow in the duct?
2.	A $5/8$ -inch diameter garden hose is used to fill a round swimming pool 7.2 m in diameter. How long will it take to fill the pool to a depth of 1.5 m if water issues from the hose at a speed of 0.28 m/s?
3.	What gauge pressure in the water mains is necessary if a fire hose is to spray water to a height of 12.0 m? h = 12.0m.
4.	What is the lift (in newtons) due to Bernoulli's principle on a wing of a duck of area 80m^2 if the air passes over the top and bottom surfaces at speeds of 340m/s and 290m/s, respectively?
5.	Water at a pressure of 3.8 atm at street level flows into an office building at a speed of 0.60m/s through a pipe 5.0cm in diameter. The pipes taper down to 2.6cm in diameter by the top floor, 20m above. Calculate the flow velocity and the pressure in such a pipe on the top floor. Ignore viscosity. Pressures are gauge pressures.
6.	6. Intravenous infusions are often made under gravity. Assuming the fluid has a density of 1.00 g/cm^3, at what height h should the bottle be placed so the liquid pressure is a) 65 mm-hg, b) 550 mm-H 2 O? c) If the blood pressure is 18 mm-Hg above atmospheric pressure, how high should the bottle be placed so that the fluid just barely enters the vein?

Nama			Dota	
Name: Mr. Croom's Physics			Date: Chapter 9: Solids and Fluids	
7.	and that of the needle 0.20 mm, a) v	with what force does the fluid lead luid into a vein where the gauge	odermic needle. If the diameter of the plunger is 1.3 cm ce does the fluid leave the needle? b) What force on the n where the gauge pressure is 18 mm-Hg? Answer for the	
8.	that the pressure behind the eardrun	m is being equalized to that outsi	mountains, your ears pop, which mean ide. If this did not happen, what would nge in altitude of 1000m takes place?	
9.	Suppose a person can reduce the pr then be sucked up a straw?	ressure in the lungs to -80 mm-H	g gauge pressure. How high can water	
10.	How high should the pressure head viscosity.	l be if water is to come from a fa	ucet at a speed of 7.2 m/s? Ignore	
11.	A ship, carrying freshwater to a des 2650 m^2 at the waterline. When ut delivered?		a horizontal cross-sectional area of gher in the sea. How much water was	