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218 CHAPTER 8 + Dynamics [I: Motion in a Plane

FIGURE 8.10 Free-body diagrams showing It"s interesting to explore what happens at other speeds. The car will need to rely on
the static friction force when v = v, and both the banking and friction if it takes the curve at a speed higher or lower than v,
when v < w, f1GURE 8.10a has modified the free-body diagram to include a static friction force.

(a) v = v, Remember thiat Jf must be parallel to the surface. so it is tilted downward at angle #.

Because f. has a component in the positive r-direction, the net radial force is larger
Bl snifaos than that provided by i1 alone. This will allow the car to take the curve at v = v, We
could use a quantitative analysis similar to Example 8.5 to determine the maximum
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Net force toward the speed on a banked curve by analyzing Figure 8.10a when f, = fqmax

center of the circle

PR But what about taking the curve at a speed v = v,? In this situation, the r-
component of the normal force is too big: not that much center-directed force is

< needed. As FIGURE 8.10b shows, the net force can be reduced by having f, point up the

slope! This seems very strange al first. but consider the limiting case in which the car
is parked on the banked curve, with v = (). Were it not for a static friction force point:
ing up the slope, the car would slide sideways down the incline. In fact, for any speed
less than v, the car will slip to the inside of the curve unless it is prevented from doing

s0 by a static friction force pointing up the slope.
FORH e Our analysis thus finds three divisions of speed. At vy, the car turns the corner with
Net force loward the 1o assistance from friction. At greater speeds, the car will slide out of the curve unless
GeRmT GL MR A= an inward-directed friction force increases the size of the net force. And last, at lesser
b speeds, the car will slip down the incline unless an outward-directed friction force pre

vents it from doing so.

exampLe 8.6 A rock in a sling rock moves in a horizental circle, so the center of the circle 1s not
A Stone Age hunter places a 1.0 kg rock in a sling and swings itin & his hand. The r-axis points to the center of the circle, but the
a horizontal circle around his head on a 1.0-m-long vine. If the tension force is directed along the vine. Thus the correct free-body
vine breaks at a tension of 200 N, what is the maximum angular diagram is the one in Figure 8.11b.

speed, in rpm, with which he can swing the rock™ soLve The free-body diagram shows that the downward gravita-
mopeL Model the rock as a particle in nniform circular motion. tional force is balanced by an upward component of the tension,

e i : leavine the radial component of the tension 1o cause the cen-
visuALIiZE This problem appears, at first, 10 be essentially the i : I z = -
; : : : : tripetal acceleration. Newton s second law 15
same as Example 8.3, where the father spun his child around on a

rope. However, the lack of a normal force from a supporting sur- = = v
face makes a bie difference. In this case, the enly contact force on Z By eoadis— =
the rock is the tension in the vine, Because the rock moves in a SF = Tanl = )

horizontal circle, you may be tempted to draw a free-body dia- 2K T A g {

eram like FIGURE 8.11a, where T is directed along the r-axis. You  where @ is the angle of the vine below horizontal. From the -
will quickly run into trouble, however, because this diagram has a  equation we find

net foree in the z-direction and it is impossible to satisfy 2 F, = 0. . mg

The gravitational force F,, certainly points vertically downward, sinf) =

<o the difficulty must be with T. ;
s0 the difficulty must be Wilh II {i.'[}kgjﬂ},ﬁﬂ'lf'h']

As an experiment, tie a small weight to a string, swing il over f = sin 3 ®1°
i . ¥ : = - '] W
your head, and check the angle of the string. You will quickly dis- 200 N
cover that the string is net horizontal but, instead, is angled down-  where we ve evaluated the angle at the maximum tension ol

ward. The sketch of FIGURE 8.11b labels the angle 6. Notice that the 200 N. The vine's angle of inclination is small but not zero.

EIGURE 8.11 Pictorial representation of a rock in a sling.
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Turning now to the r-equation, we find the rock’s speed 15 (1T cos2B

;'I.-"f "cosf

ot Y m

Careful'! The radius r of the circle 1s not the length L of the vine.
¥ou can see in Figure 8.11b that r = L cosé. Thus W v
(e} =

sk

BOHHINKSS A hlock on a string spins in a horizontal circle on a frictionless

ghle. Rank order, from largest to smallest, the tensions 7, to T, acting on blocks a to e.

\ = W) Cm
II]I]||1||1 f

fel FOL) rpm ik

I [ cm |

.'-___- i) _‘:-I,.‘|||||i e S0 cm r Mem ! 25 ¢cm

200 rpm 2000 rpm

ial i h) {c) id) ie)

8.4 Circular Orbits

Bitellites orbit the earth, the earth orbits the sun, and our entire solar system orbits the

ter of the Milky Way galaxy. Not all orbits are circular, but in this section we’ll
it our analysis to circular orbits, We'll look at the elliptical orbits of satellites and
Blnets in Chapter 13,

How does a satellite orbit the earth? What forces act on it? Why does it move n a
fitle? To answer these important questions, let’s return, for a moment, to projectile

fion. Projectile motion occurs when the only force on an object is gravity. Oul
alysis of projectiles assumed that the earth is flat and that the acceleration due to
Bty is everywhere straight down. This is an acceptable approximation for projec-
#8 of limited range, such as baseballs or cannon balls, but there comes a point where
{tin no longer ignore the curvature of the earth.

BHGURE 8.12 shows a perfectly smooth, spherical, airless planet with one tower of
.m Lh. A projectile is launched from this tower parallel to the ground (6 = 07) with
.-'- . If v, 1s very small, as in trajectory A, the “flat-carth approximation is valid
lthe problem is identical to Example 4.4 in which a car drove off a cliff. The pro-
elile simply falls to the ground along a parabolic trajectory.

A8 the initial speed v, is increased, the projectile begins to notice that the ground
Burving out from beneath it. It is falling the entire time, always getting closer to
Riround, but the distance that the projectile travels before finally reaching the
Bind—that is, its range—increases because the projectile must “catch up” with
Raround that is curving away from it. Trajectories B and C are of this type. The
Wil calculation of these trajectories 1s beyvond the scope of this textbook, but you

gl be able to understand the factors that influence the trajectory.

lithe launch speed v, is sufficiently large, there comes a point where the curve of

Wiectory and the curve of the earth are parallel. In this case, the projectile “falls”
il never cets any closer to the ground! This is the situation for trajectory D. A

el trajectory around a planet or star, such as trajectory D, 1s called an orbit.

(1.0 m)(200 N){(cos2.81°)°
=N N

We can now find the maximum angular speed, the value of w that
brings the tension to the breaking point:

14.1 rad

r L cosf

1.0 kg

= 4.1 m/s

6l s

| min

| rev

e g

: = 135 rpm
| 5 27t rad

FIGURE 8.12 Projectiles being launched
at increasing speeds from height i on a
smoath, airless planet.
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