t of 15

e number

.~

cans yo_u ought

per of giris wer as

atio of $\mathsf{gir}_{\mathfrak{T}}$

$$=\frac{z}{28}$$
$$-\frac{3}{12}$$

35,461

+ 12

LESSON 6.2 DIMENSIONAL ANALYSIS

In Lesson 4.6, you used the distance formula D = rt. D is the distance traveled while moving at a rate (or speed) r during a period of time t. If you solve the distance formula for r, rate is a ratio.

$$r = \frac{D}{t}$$

In general, a **rate** is a ratio that compares two unlike quantities. For example, if a truck travels 100 miles in 2 hours, the rate is

$$r = \frac{D}{t} = \frac{100 \text{ miles}}{2 \text{ hours}}$$

A unit rate is a comparison to one unit. To write a unit rate, find an equivalent ratio with 1 as the denominator. You can use equal ratios to find unit rates. For the example above,

$$\frac{\text{Miles}}{\text{Hours}} \to \frac{100}{2} = \frac{50}{1}$$

The unit rate is 50 miles for each hour traveled. You can write 50 miles per hour or 50 mi/hr or 50 $\frac{\text{mi}}{\text{hr}}$. The word per is often used in place of for each. You can abbreviate per with the / symbol.

ACTIVITY Finding Unit Rates

1 Sale price: 5 cans for \$2

$$\frac{5 \text{ cans}}{2 \text{ dollars}} = \frac{2.5 \text{ cans}}{1 \text{ dollar}} = 2.5 \text{ cans/dollar}$$

2 Gas mileage: 78 miles using 3 gallons of gas

$$\frac{78 \text{ miles}}{3 \text{ gallons}} = \frac{? \text{ miles}}{1 \text{ gallon}} = \frac{? \text{ mi/gal}}{?}$$

3 Starting wage: \$326 for 40 hours

$$\frac{326 \text{ dollars}}{40 \text{ hours}} = \frac{? \text{ dollars}}{1 \text{ hour}} = \$ \underline{?} / \text{hr}$$

4 Weight of oranges: 5 oranges weigh 0.75 kilograms

$$\frac{5 \text{ oranges}}{0.75 \text{ kg}} = \frac{?}{?} = \underline{?} \text{ oranges/kg}$$

ONGOING ASSESSMENT

In the 1996 Summer Olympic Games, a world record of 19.32 seconds was set in the 200-meter dash. A world record of 9.84 seconds was set in the 100-meter dash. Did the runner of the 200-meter dash or the runner of the 100-meter dash run the fastes average speed?

When solving problems, you often need to change or convert the units of measurement of a quantity. To convert units of measurement, multiply by a *conversion factor*.

A **conversion factor** is a ratio in which the numerator equals the denominator, but in different units. This ratio is equal to 1.

For example, a length of 12 inches equals a length of 1 foot. Thus

12 in. = 1 ft and
$$\frac{12 \text{ in.}}{1 \text{ ft}} = 1$$

EXAMPLE 1 Using Conversion Factors

Use the following conversion factors.

5280 ft	60 min	24 hr	1 week
1 mi	1 hr	1 day	7 day

a. Convert 1.75 miles to feet.

b. Convert 6800 feet to miles.

c. Convert 1 week to minutes.

SOLUTION

a.
$$1.75 \text{ mi} = \frac{1.75 \text{ mi}}{1} \cdot \frac{5280 \text{ ft}}{1 \text{ mi}} = 9240 \text{ ft}$$

b. Since
$$\frac{5280 \text{ ft}}{1 \text{ mi}} = 1$$
, its reciprocal $\frac{1 \text{ mi}}{5280 \text{ ft}} = 1$.

$$6800 = \frac{6800 \text{ ft}}{1} \cdot \frac{1 \text{ mi}}{5280 \text{ ft}} = \text{about } 1.288 \text{ mi}$$

c. 1 week =
$$\frac{1 \text{ week}}{1} \cdot \frac{7 \text{ dry}}{1 \text{ week}} \cdot \frac{24 \text{ kg}}{1 \text{ dry}} \cdot \frac{60 \text{ min}}{1 \text{ kg}} = 10,080 \text{ min}$$

ONGOING ASSESSMENT

Use the conversion factors in Example 1.

a. Convert 18,480 feet to miles.

b. Convert 100,000 minutes to weeks.

of ecord of nner of the the fastest

onvert s of

equals the o 1.

foot. Thus.

30 min

Critical Thinking Use the following equalities to write ratios that can be used as conversion factors. Write two ratios from each equality. Why is each ratio equal to 1?

$$2.54 \text{ cm} = 1 \text{ in}.$$

$$1 \text{ kg} = 2.205 \text{ lb}$$

$$1.467 \text{ ft/sec} = 1 \text{ mi/hr}$$

EXAMPLE 2: Converting Units.

Ichiro has taken a summer job that pays \$7.50 per hour. At this rate, how much money will Ichiro earn working 8 hours per day, 5 days per week, for 6 weeks?

SOLUTION

Since Ichiro works 6 weeks, find the unit rate in dollars per week.

$$\frac{7.50 \text{ dollars}}{1 \text{ loft}} \cdot \frac{8 \text{ loft}}{1 \text{ doly}} \cdot \frac{5 \text{ dolys}}{1 \text{ week}} = \frac{300 \text{ dollars}}{1 \text{ week}}$$

$$\text{Earnings} = \text{Rate} \cdot \text{Time}$$

$$= \frac{300 \text{ dollars}}{1 \text{ week}} \cdot 6 \text{ weeks}$$

$$= 1800 \text{ dollars}$$

Ichiro will earn \$1800 in 6 weeks.

LESSON ASSESSMENT

Think and Discuss

- 1 How do you write a ratio as a unit rate?
- 2 Explain why you can use the reciprocal of any conversion factor as a conversion factor.
- 3 How do you know whether to use a given conversion factor or its reciprocal?

Practice and Apply

Write a unit rate for each of the following.

- **4.** 14 boxes of files cost \$33.60.
- 5. 54 ounces has a volume of 20 cubic centimeters.
- 6. 10 gallons is equivalent to 37.7 liters.
- 7. Walking 29.3 feet in 20 seconds.