If waves A and B are superposed (that is, their amplitudes are added) the resultant wave is
The amplitudes of waves A and B have to be added at each point!

If waves A and B are superposed (that is, their amplitudes are added) the resultant wave is

The amplitudes of waves A and B have to be added at each point!

Superposition

Question 28.1

a)

b)

c)

d)
Question 28.2a

The two waves shown are

a) out of phase by 180°
b) out of phase by 90°
c) out of phase by 45°
d) out of phase by 360°
e) in phase
The two waves shown are

a) out of phase by 180°

b) out of phase by 90°

c) out of phase by 45°

d) out of phase by 360°

e) in phase

The two waves are out of phase by 1/4 wavelength (as seen in the figure), which corresponds to a phase difference of 90°.

Follow-up: What would the waves look like for (4) to be correct?
Two light sources emit waves of \(\lambda = 1 \text{ m} \) which are in phase. The two waves from these sources meet at a distant point. Wave 1 traveled 2 m to reach the point, and wave 2 traveled 3 m. When the waves meet, they are

a) out of phase by 180°

b) out of phase, but not by 180°

c) in phase
Since $\lambda = 1$ m, wave 1 has traveled twice this wavelength while wave 2 has traveled three times this wavelength. Thus, their phase difference is one full wavelength, which means they are still in phase.
In a double-slit experiment, when the wavelength of the light is increased, the interference pattern

a) spreads out
b) stays the same
c) shrinks together
d) disappears
In a double-slit experiment, when the wavelength of the light is increased, the interference pattern spreads out.

\[d \sin \theta = m\lambda \]

If \(\lambda \) is increased and \(d \) does not change, then \(\theta \) must increase, so the pattern spreads out.

Question 28.3a Double Slits I

- a) spreads out
- b) stays the same
- c) shrinks together
- d) disappears
If instead the slits are moved farther apart (without changing the wavelength) the interference pattern

- a) spreads out
- b) stays the same
- c) shrinks together
- d) disappears
If instead the slits are moved farther apart (without changing the wavelength) the interference pattern shrinks together.

Follow-up: When would the interference pattern disappear?
Question 28.4

In a double-slit experiment, what *path difference* have the waves from each slit traveled to give a minimum at the indicated position?

- a) there is no difference
- b) half a wavelength
- c) one wavelength
- d) three wavelengths
- e) more than three wavelengths
Question 28.4

In a double-slit experiment, what *path difference* have the waves from each slit traveled to give a minimum at the indicated position?

- a) there is no difference
- b) half a wavelength
- c) one wavelength
- d) three wavelengths
- e) more than three wavelengths

For destructive interference

\[\delta = \frac{1}{2} \lambda, \frac{3}{2} \lambda, \frac{5}{2} \lambda, \frac{7}{2} \lambda, \ldots \]

\[= (m + 1/2) \lambda \]
An interference pattern is seen from two slits. Now cover one slit with glass, introducing a phase difference of 180° (1/2 wavelength) at the slits. How is the pattern altered?

a) pattern vanishes
b) pattern expands
c) bright and dark spots are interchanged
d) pattern shrinks
e) no change at all
An interference pattern is seen from two slits. Now cover one slit with glass, introducing a phase difference of 180° (1/2 wavelength) at the slits. How is the pattern altered?

If the waves originating from the two slits have a phase difference of 180° when they start off, the central spot will now be dark!! To the left and the right, there will be bright spots. Thus bright and dark spots are interchanged.

Follow-up: What happens when the phase difference is 90°?
Question 28.6a Parallel Slides I

Consider two identical microscope slides in air illuminated with light from a laser. The slides are exactly parallel, and the top slide is moving slowly upward. What do you see when looking from the top view?

a) all black
b) all white
c) fringes moving apart
d) alternately all black, then all bright
As the distance between the two slides decreases, the path difference between the interfering rays changes. Thus, the phase between the interfering rays keeps changing, alternately in phase (constructive) and out of phase (destructive) as the top slide moves.

Question 28.6a Parallel Slides I

Consider two identical microscope slides in air illuminated with light from a laser. The slides are exactly parallel, and the top slide is moving slowly upward. What do you see when looking from the top view?

- a) all black
- b) all white
- c) fringes moving apart
- d) alternately all black, then all bright

As the distance between the two slides decreases, the path difference between the interfering rays changes. Thus, the phase between the interfering rays keeps changing, alternately in phase (constructive) and out of phase (destructive) as the top slide moves.
A laser shines on a pair of identical glass microscope slides that form a very narrow edge. The waves reflected from the top and the bottom slide interfere. What is the interference pattern from top view?
A laser shines on a pair of identical glass microscope slides that form a very narrow edge. The waves reflected from the top and the bottom slide interfere. What is the interference pattern from top view?

Right at the edge, the two reflected rays have *no path length difference* and therefore should interfere *constructively*. However, the light ray reflected at the lower surface (point E) *changes phase by \(\lambda/2 \) because the index of refraction of glass is larger than that of air.
Question 28.6c Parallel Slides III

Consider two identical microscopic slides in air illuminated with light from a laser. The bottom slide is rotated upward so that the wedge angle gets a bit smaller. What happens to the interference fringes?

a) spaced farther apart
b) spaced closer together
c) no change
The path difference between ray 2 and ray 3 is $2t$ (in addition, ray 3 experiences a phase change of 180°). Thus, the dark fringes will occur for:

$$2t = m\lambda \quad m = 0,1,2,...$$

If t gets smaller, ray 2 and ray 3 have to be farther apart before they can interfere, so the fringes move apart.

Question 28.6c

Consider two identical microscopic slides in air illuminated with light from a laser. The bottom slide is rotated upward so that the wedge angle gets a bit smaller. What happens to the interference fringes?

a) spaced farther apart
b) spaced closer together
c) no change
Two identical microscope slides in air illuminated with light from a laser are creating an interference pattern. The space between the slides is now filled with water \((n = 1.33)\). What happens to the interference fringes?

- a) spaced farther apart
- b) spaced closer together
- c) no change
The path difference between ray 2 and ray 3 is $2t$ (in addition, ray 3 experiences a phase change of 180°). Thus, the dark fringes will occur for:

$$2t = m\lambda_{\text{water}}$$

where $\lambda_{\text{water}} = \frac{\lambda_{\text{air}}}{n}$

Thus, the water has decreased the wavelength of the light.

Question 28.6d Parallel Slides IV

Two identical microscope slides in air illuminated with light from a laser are creating an interference pattern. The space between the slides is now filled with water ($n=1.33$). What happens to the interference fringes?

- a) spaced farther apart
- b) spaced closer together
- c) no change

The path difference between ray 2 and ray 3 is $2t$ (in addition, ray 3 experiences a phase change of 180°). Thus, the dark fringes will occur for:

$$2t = m\lambda_{\text{water}}$$

where $\lambda_{\text{water}} = \frac{\lambda_{\text{air}}}{n}$

Thus, the water has decreased the wavelength of the light.
The diffraction pattern below arises from a single slit. If we would like to sharpen the pattern, i.e., make the central bright spot narrower, what should we do to the slit width?

a) narrow the slit
b) widen the slit
c) enlarge the screen
d) close off the slit
The angle at which one finds the first minimum is:

$$\sin \theta_p = \frac{\lambda}{a}$$

The central bright spot can be narrowed by having a smaller angle. This in turn is accomplished by widening the slit.

Question 28.7a

The diffraction pattern below arises from a single slit. If we would like to sharpen the pattern, i.e., make the central bright spot narrower, what should we do to the slit width?

- a) narrow the slit
- b) widen the slit
- c) enlarge the screen
- d) close off the slit

Answer: b) widen the slit
Blue light of wavelength λ passes through a single slit of width a and forms a diffraction pattern on a screen. If the blue light is replaced by red light of wavelength 2λ, the original diffraction pattern can be reproduced if the slit width is changed to:

a) $a/4$

b) $a/2$

c) no change needed

d) $2a$

e) $4a$
Question 28.7b

Blue light of wavelength λ passes through a single slit of width a and forms a diffraction pattern on a screen. If the *blue light* is replaced by *red light* of wavelength 2λ, the original diffraction pattern can be reproduced if the slit width is changed to:

- a) $a/4$
- b) $a/2$
- c) no change needed
- d) $2a$
- e) $4a$

\[a \sin \theta_p = p\lambda \quad \text{(minima)} \]

If $\lambda \rightarrow 2\lambda$, then we must have $a \rightarrow 2a$ for $\sin \theta$ to remain unchanged (and thus give the same diffraction pattern).
Imagine holding a circular disk in a beam of monochromatic light. If diffraction occurs at the edge of the disk, the center of the shadow is

Question 28.8

Diffraction Disk

a) darker than the rest of the shadow

b) a bright spot

c) bright or dark, depending on the wavelength

d) bright or dark, depending on the distance to the screen
By symmetry, all of the waves coming from the edge of the disk interferes constructively in the middle because they are all in phase and they all travel the same distance to the screen.

Question 28.8

Diffraction Disk

Imagine holding a circular disk in a beam of monochromatic light. If diffraction occurs at the edge of the disk, the center of the shadow is:

- a) darker than the rest of the shadow
- b) a bright spot
- c) bright or dark, depending on the wavelength
- d) bright or dark, depending on the distance to the screen

Follow-up: What if the disk is oval and not circular?