ConcepTest Clicker Questions
Chapter 19

Physics, 4th Edition
James S. Walker

**Question 19.1a** Electric Charge I

Two charged balls are repelling each other as they hang from the ceiling. What can you say about their charges?

- a) one is positive, the other is negative
- b) both are positive
- c) both are negative
- d) both are positive or both are negative

**Follow-up**: What does the picture look like if the two balls are oppositely charged? What about if both balls are neutral?

**Question 19.1b** Electric Charge II

From the picture, what can you conclude about the charges?

- a) have opposite charges
- b) have the same charge
- c) all have the same charge
- d) one ball must be neutral (no charge)

**Question 19.2a** Conductors I

A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a positive-charged rod held near the ball. The charge of the ball must be:

- a) positive
- b) negative
- c) neutral
- d) positive or neutral
- e) negative or neutral

The GREEN and PINK balls must have the same charge, since they repel each other. The YELLOW ball also repels the GREEN, so it must also have the same charge as the GREEN (and the PINK).
Clearly, the ball will be attracted if its charge is **negative**. However, even if the ball is **neutral**, the charges in the ball can be separated by **induction** (polarization), leading to a net attraction.

**Follow-up**: What happens if the metal ball is replaced by a plastic ball?

**Question 19.2a**  
A metal ball hangs from the ceiling by an insulating thread. The ball is attracted to a **positive**-charged rod held near the ball. The charge of the ball must be:

- a) **positive**
- b) **negative**
- c) **neutral**
- d) **positive or neutral**
- e) **negative or neutral**

**Remember**: Remember the ball is a conductor!

**Follow-up**: What will happen when the conductors are reconnected with a wire?

**Question 19.3a**  
**Coulomb’s Law I**

What is the magnitude of the force $F_1$?

- a) $1.0 \text{ N}$
- b) $1.5 \text{ N}$
- c) $2.0 \text{ N}$
- d) $3.0 \text{ N}$
- e) $6.0 \text{ N}$

$F_1 = 3 \text{ N}$

The force $F_2$ must have the **same magnitude** as $F_1$. This is due to the fact that the form of Coulomb’s law is totally symmetric with respect to the two charges involved. The force of one on the other of a pair is the same as the reverse. Note that this sounds suspiciously like Newton’s 3rd law!

**Question 19.3b**  
**Coulomb’s Law II**

If we increase one charge to $4Q$, what is the magnitude of $F_2$?

- a) $3/4 \text{ N}$
- b) $3.0 \text{ N}$
- c) $12 \text{ N}$
- d) $16 \text{ N}$
- e) $48 \text{ N}$

$F_1 = ?$

$F_2 = ?$
Follow-up

Now we have:

Originally we had:

\[ F_1 = 3 \text{ N} \]

Now we have:

\[ F_1 = \frac{k|Q_1|Q_2}{(2d)^2} = 3 \text{ N} \]

Follow-up: Now what is the magnitude of \( F_2 \)?

Question 19.3c  Coulomb’s Law III

The force between two charges separated by a distance \( d \) is \( F \). If the charges are pulled apart to a distance \( 3d \), what is the force on each charge?

- a) \( 9F \)
- b) \( 3F \)
- c) \( F \)
- d) \( 1/3F \)
- e) \( 1/9F \)

Follow-up: What is the force if the original distance is halved?

Question 19.4a  Electric Force I

Two balls with charges \(+Q\) and \(+4Q\) are fixed at a separation distance of \( 3R \). Is it possible to place another charged ball \( Q_0 \) on the line between the two charges such that the net force on \( Q_0 \) will be zero?

- a) yes, but only if \( Q_0 \) is positive
- b) yes, but only if \( Q_0 \) is negative
- c) yes, independent of the sign (or value) of \( Q_0 \)
- d) no, the net force can never be zero

Follow-up: What happens if both charges are \(+Q\)?

Where would the \( F = 0 \) point be in this case?
Question 19.4b  Electric Force II

Two balls with charges $+Q$ and $+4Q$ are separated by $3R$. Where should you place another charged ball $Q_0$ on the line between the two charges such that the net force on $Q_0$ will be zero?

The force on $Q_0$ due to $+Q$ is: $F = kQ_0/Q^2$

The force on $Q_0$ due to $+4Q$ is: $F = kQ_0/(4Q)/(2R)^2$

Since $+4Q$ is 4 times bigger than $+Q$, $Q_0$ needs to be farther from $+4Q$. In fact, $Q_0$ must be twice as far from $+4Q$, since the distance is squared in Coulomb’s law.

Question 19.4c  Electric Force III

Two balls with charges $+Q$ and $-4Q$ are fixed at a separation distance of $3R$. Is it possible to place another charged ball $Q_0$ anywhere on the line such that the net force on $Q_0$ will be zero?

A charge (positive or negative) can be placed to the left of the $+Q$ charge, such that the repulsive force from the $+Q$ charge cancels the attractive force from $-4Q$.

Follow-up: What happens if one charge is $+Q$ and the other is $-Q$?

Question 19.5a  Proton and Electron I

A proton and an electron are held apart a distance of 1 m and then released. As they approach each other, what happens to the force between them?

By Coulomb’s law, the force between the two charges is inversely proportional to the distance squared. So, the closer they get to each other, the bigger the electric force between them gets!

Follow-up: Which particle feels the larger force at any one moment?

Question 19.5b  Proton and Electron II

A proton and an electron are held apart a distance of 1 m and then released. Which particle has the larger acceleration at any one moment?

Comparison of forces and accelerations for the proton and electron.
The two particles feel the same force. Since $F = ma$, the particle with the smaller mass will have the larger acceleration. This is the electron.

**Question 19.5b  Proton and Electron II**
A proton and an electron are held apart a distance of 1 m and then released. Which particle has the larger acceleration at any one moment?

- a) proton
- b) electron
- c) both the same

**Question 19.5c  Proton and Electron III**
A proton and an electron are held apart a distance of 1 m and then let go. Where would they meet?

- a) in the middle
- b) closer to the electron’s side
- c) closer to the proton’s side

By Newton’s 3rd law, the electron and proton feel the same force. Since $F = ma$, and since the proton’s mass is much greater, the proton’s acceleration will be much smaller! Thus, they will meet closer to the proton’s original position.

**Follow-up**: Which particle will be moving faster when they meet?

**Question 19.6  Forces in 2D**
Which of the arrows best represents the direction of the net force on charge $+Q$ due to the other two charges?

**Follow-up**: What would happen if the yellow charge were $+3Q$?

The charge $+2Q$ repels $+Q$ toward the right. The charge $+4Q$ repels $+Q$ upward, but with a stronger force. Therefore, the net force is up and to the right, but mostly up.

**Question 19.7  Electric Field**
You are sitting a certain distance from a point charge, and you measure an electric field of $E_0$. If the charge is doubled and your distance from the charge is also doubled, what is the electric field strength now?

- a) $4E_0$
- b) $2E_0$
- c) $E_0$
- d) $1/2E_0$
- e) $1/4E_0$
Remember that the electric field is: $E = \frac{kQ}{r^2}$.

Doubling the charge puts a factor of 2 in the numerator, but doubling the distance puts a factor of 4 in the denominator, because it is distance squared! Overall, that gives us a factor of $\frac{1}{2}$.

**Question 19.7 Electric Field**

You are sitting a certain distance from a point charge, and you measure an electric field of $E_0$. If the charge is doubled and your distance from the charge is also doubled, what is the electric field strength now?

- a) $4E_0$
- b) $2E_0$
- c) $E_0$
- d) $\frac{1}{2}E_0$
- e) $\frac{1}{4}E_0$

**Follow-up:** If your distance is doubled, what must you do to the charge to maintain the same field at your new position?

**Question 19.8a Field and Force I**

Between the red and the blue charge, which of them experiences the greater electric field due to the green charge?

- a) +1
- b) +2
- c) the same for both

**Question 19.8b Field and Force II**

Between the red and the blue charge, which of them experiences the greater electric force due to the green charge?

- a) +1
- b) +2
- c) the same for both

The electric field is the same for both charges, but the force on a given charge also depends on the magnitude of that specific charge.

**Question 19.8c Field and Force III**

Between the red and the blue charge, which of them experiences the greater electric force due to the green charge?

- a) +1
- b) +2
- c) the same for both

**Question 19.8d Field and Force IV**

Between the red and the blue charge, which of them experiences the greater electric force due to the green charge?

- a) +1
- b) +2
- c) the same for both

**Question 19.9a Superposition I**

What is the electric field at the center of the square?

- a) $E = \frac{kQ}{r^2}$
- b) $E = \frac{kQ}{r^3}$
- c) $E = 0$
- d) $E = \frac{kQ}{r^4}$
- e) $E = 0$
Question 19.9a  Superposition I
What is the electric field at the center of the square?

For the upper charge, the $E$ field vector at the center of the square points toward that charge. For the lower charge, the same thing is true. Then the vector sum of these two $E$ field vectors points to the left.

Follow-up: What if the lower charge were +2 C? What if both charges were +2 C?

Question 19.9b  Superposition II
What is the electric field at the center of the square?

The four $E$ field vectors all point outward from the center of the square toward their respective charges. Because they are all equal, the net $E$ field is zero at the center!

Follow-up: What if the upper two charges were +2 C? What if the right-hand charges were +2 C?

Question 19.9c  Superposition III
What is the direction of the electric field at the position of the $X$?

The two +Q charges give a resultant $E$ field that is down and to the right. The −Q charge has an $E$ field up and to the left, but smaller in magnitude. Therefore, the total electric field is down and to the right.

Follow-up: What if all three charges reversed their signs?

Question 19.10  Find the Charges
Two charges are fixed along the x axis. They produce an electric field $E$ directed along the negative y axis at the indicated point. Which of the following is true?

- a) charges are equal and positive
- b) charges are equal and negative
- c) charges are equal and opposite
- d) charges are equal, but sign is undetermined
- e) charges cannot be equal

Follow-up: What if all three charges reversed their signs?
The way to get the resultant PINK vector is to use the GREEN and BLUE vectors. These vectors correspond to equal charges (because the lengths are equal) that are both negative (because their directions are toward the charges).

**Follow-up:** How would you get the \( \mathbf{E} \) field to point toward the right?

---

**Question 19.10** Find the Charges

Two axes are fixed along the \( x \)-axis. They produce an electric field \( \mathbf{E} \) directed along the negative \( y \)-axis at the indicated point. Which of the following is true?

- a) charges are equal and positive
- b) charges are equal and negative
- c) charges are equal and opposite
- d) charges are equal, but sign is undetermined
- e) charges cannot be equal

---

**Question 19.11** Uniform Electric Field

In a uniform electric field in empty space, a 4 C charge is placed and it feels an electric force of 12 N. If this charge is removed and a 6 C charge is placed at that point instead, what force will it feel?

- a) 12 N
- b) 8 N
- c) 24 N
- d) no force
- e) 18 N

---

**Question 19.12a** Electric Field Lines I

What are the signs of the charges whose electric fields are shown at right?

- a)
- b)
- c)
- d)
- e) no way to tell

---

**Question 19.12b** Electric Field Lines II

Which of the charges has the greater magnitude?

- a)
- b)
- c) both the same

---

In a uniform electric field in empty space, a 4 C charge is placed and it feels an electric force of 12 N. If this charge is removed and a 6 C charge is placed at that point instead, what force will it feel?

Since the 4 C charge feels a force, there must be an electric field present, with magnitude:

\[ E = \frac{F}{q} = \frac{12 \text{ N}}{4 \text{ C}} = 3 \text{ N/C} \]

Once the 4 C charge is replaced with a 6 C charge, this new charge will feel a force of:

\[ F = qE = (6 \text{ C})(3 \text{ N/C}) = 18 \text{ N} \]

**Follow-up:** What if the charge is placed at a different position in the field?
Question 19.12b  Electric Field Lines II

Which of the charges has the greater magnitude?

a)  

b) 

c) both the same

The field lines are denser around the red charge, so the red one has the greater magnitude.

Follow-up: What is the red/green ratio of magnitudes for the two charges?