Table of Contents

Welcome Letter 2
Sample Itinerary 3
Concepts Covered In This Manual 5
Pirate 6
Carrousel 8
Wave Swinger 10
TIDAL FORCE® 12
Comet 14
SOOPERDOOPERLOOPER® 16
Trailblazer 18
Sidewinder 20
The WILDCAT 22
GREAT BEAR® 24
The Wild Mouse 26
THE CLAWsm 28
STORM RUNNER® 30
Ride Measurements 32
Building a Force Meter 36
Map of HERSHEYPARK 37

HERSHEYPARK® is proud to support the education of students through our theme park laboratory. For years, HERSHEYPARK has utilized this unique opportunity for students to apply their knowledge in a hands-on environment.

HERSHEYPARK serves as an excellent destination for those groups seeking a day filled with educational opportunities, while simultaneously offering the exciting surrounds of a theme park.

We have designed our educational guides as a resource for all ages, grade levels, and curriculums. We encourage you to use this guide as a resource to plan your own adventure within HERSHEYPARK. Feel free to use the activities, which you feel are most appropriate for your students and reproduce the worksheets as needed.

HERSHEYPARK would like to recognize several individuals who have contributed their time and energy to make each educational guide beneficial. These individuals have been the success behind the HERSHEYPARK laboratory and make it possible to enhance the educational enrichment within HERSHEYPARK.

- Dr. Geno Torri, Chambersburg
- Mr. Roy DeRemer, Warwick
- Mr. Jeffery Way, Hempfield
- Mr. Jim Delaney, Manheim Township
- Mr. Jeffery Fuhrman, Donegal
- Mr. Tom Ritter, Annville Cleona
- Mr. Bill Irwin

An additional Thank You is necessary to the following individuals who are working with HERSHEYPARK in our commitment of excellence by helping to improve all educational programs. We greatly value their time and efforts.

- Ms. Kara Czernik-Hines, Ridley
- Mr. Paul Hine, Ridley
- Ms. Kelly Miller, Elizabethtown
- Mr. Geno Torri, Chambersburg
- Mr. Mark Elicker, Elizabethtown
- Ms. Karen Muckenthaler, Elizabethtown
- Mr. Justin Brohl, Ridley
- Ms. Monika Hager, Homeschool Program Supervisor

HERSHEYPARK will gladly accept any additional problems, experiment, or corrections to our educational guides. Please feel free to email HERSHEYPARK Group Sales, with your comments or questions to Hersheyparkgroups@hersheypa.com.

A M essage to Educators from the Authors

Dear Colleague

HERSHEYPARK Physics Day offers students a unique opportunity to experience first hand the physics concepts learned in the classroom. Over the years, many teachers have, through trial and error, developed ideas and procedures that make the Physics Day experience one of the most significant learning events of the year for their students. The authors would like to offer the following suggestions and advice:

Prior to the trip

1. Administrative preparation

\qquad a. Plan financing of trip.
\qquad b. Present proposal to administration for approval.
\qquad c. Determine procedures to be used at the park, like check-in locations and what to do in the event of an emergency situation.
\qquad d. Obtain permission slips from students. NOTE: Be sure that students indicate any medical concerns (like allergies to bee stings) on their permission slips.
\qquad e. Line up transportation.
\qquad f. Provide maps of HERSHEYPARK to the students. Discuss locations of emergency facilities and check-in points.
g. Establish itinerary to maximize educational opportunities.

Typical time schedule

9:30 a.m. Special for Physic Day participants only - HERSHEYPARK gates will open early just for you.
10:30 a.m. Rides open. Begin lab activities. Activities typically take between three and four hours to complete with good reliability. Lunch-time check-in is a good time to assess how activities are going.

2:30 p.m. Experimenting is typically completed by this time making it a good time for a check-in. Materials can be collected. Some groups leave at this time in order to arrive at their school at the end of the school day. Other schools give students free time to enjoy the Park until it closes.

2. Educational preparation

\qquad a. Establish and review safety requirements and emergency procedures.
\qquad b. Pretest students on concepts to be reinforced by the field trip.
\qquad c. Teach/review concepts that will be dealt with during the trip.
\qquad d. Construct accelerometers.
\qquad e. Assemble together all materials (lab sheets, pencils, calculators, stop watches, accelerometers, and plastic bags to carry everything in.)
\qquad f. Determine number of students per lab group and assign lab group members (groups of 3 or 4 seem to work best.)
\qquad g. Set clear objectives and requirements for students (number of rides to analyze, evaluation procedures that will be applied, follow-up assignments, etc.)

Example: All students must complete worksheet packets on five rides of which at least two must be coasters and two must be non-coasters.

Day of the trip

\qquad 1. Remind students of safety requirements and emergency procedures.
\qquad 2. Remind students of check in times and locations.
\qquad 3. Students should be prepared for sun or rain (sunscreen is highly recommended!)
\qquad 4. Students should bring money for food, phone, and storage locker.

After the trip

\qquad 1. Schedule class time for follow-up discussion of concepts experienced.
\qquad 2. Evaluate student work.
\qquad 3. Post-test students on concepts.
\qquad 4. Put up bulletin board (it's great motivation for future classes!)

We hope that your educational experience goes smoothly and that your students walk away with a deeper understanding of the principles of physics.

Jim Delaney
Physics teacher
Manheim Township School District

Jeffrey Way

Physics teacher
Hempfield School District
Concepts Covered in this Manual

Concept \rightarrow Ride \downarrow	Linear Speed	Linear Acceler.	Circular Speed	Circular Acceler.	Linear Forces	Centripetal Forces	Horizontal Circles	Vertical Circles	Kinetic Energy	Potential Energy
PIRATE	X			X		X			X	X
CARROUSEL			X	X		X	X			
WAVE SWINGER			X	X		X	X			
TIDAL FORCE	X	X			X				X	X
COMET	X					X			X	X
SOOPERDOOPERLOOPER	X			X		X		X	X	X
TRAILBLAZER			X	X			X			
SIDEWINDER	X		X	X		X		X	X	X
WILDCAT	X	X			X					
GREAT BEAR			X	X		X		X		

The Pirate

As you can tell, the HERSHEYPARK Pirate is a very large pendulum. In an ideal situation, the potential energy, E_{p}, at the top of the swing should equal the kinetic energy, E_{k}, at the bottom of the swing. However, this is NOT an ideal situation. (Why?)

Question 1: How does the E_{p} at the top of the ride compare to the E_{κ} at the bottom of the ride?

Prediction 1: The E_{k} at the bottom of the ride will be:
(Choose one)
(a) equal to the E_{p} at the top.
(b) about 70% of the E_{p} at the top.

(c) about 50% of the E_{p} at the top.
(d) about 30% of the E_{p} at the top.

Try It !!: We can answer the Question in the following manner:
I) Find the E_{p} at the top using the height at the center of the boat and the mass of the boat. (See Engineering Specifications on the back)
$\mathrm{E}_{\mathrm{p}}=\mathrm{m} \cdot \mathrm{g} \cdot \Delta \mathrm{h}=$ \qquad Joules
II) We can find the E_{k} in two different ways (please do both ways).
(A) From the ground: Find the speed of the boat at the bottom by timing how long it takes for the complete length of the boat (from tip to stern) to pass the lowest point of the swing. Calculate the speed. Then calculate the E_{κ}.
$\mathrm{t}=$ \qquad s $\quad v=$ length/time $=$ \qquad $\mathrm{m} / \mathrm{s} \quad \mathrm{E}_{\mathrm{k}}=.5 \mathrm{~m} \cdot \mathrm{v}^{2}=$ \qquad Joules
(B) From the ride: Use the vertical accelerometer to measure the maximum acceleration (in $g^{\prime} s$) at the bottom of the ride.
Maximum acceleration = \qquad $\mathrm{g}^{\prime} \mathrm{s} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

We can use the centripetal acceleration equation to find the speed, v, and then calculate the E_{k} at the bottom of the ride. The centripetal acceleration, a_{c}, caused by the motion of the boat will be 1 g less than the maximum acceleration found above (since gravity causes a 1 g reading on the accelerometer when the boat is stopped at the bottom).
$\mathrm{a}_{\mathrm{c}}=$ \qquad $\mathrm{g}^{\prime} \mathrm{s} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
$v=\sqrt{ }\left(a_{c} \cdot r\right)=$ \qquad m / s
$\mathrm{E}_{\mathrm{k}}=.5 \mathrm{~m} \cdot \mathrm{v}^{2}=$ \qquad Joules

Observations/Conclusions:

(1) How do the E_{K} from parts IIA and IIB compare? \qquad
(2) How does the E_{k} at the bottom compare to the E_{p} at the top? What percentage did you calculate ($100 \% \cdot \mathrm{E}_{\mathrm{K}} / \mathrm{E}_{\mathrm{p}}$)? \qquad
\qquad
(3) Which prediction was the closest? Was yours? \qquad

Question 2: How many g's of acceleration will you feel at the highest points on the ride?

Prediction 2: Choose one - Closer to (a) 0 g's (b) .5 g 's (c) 1 g (d) 2 g 's

Try It !!: Use the vertical accelerometer to find out!

Observations/Conclusions: Acceleration at the highest point on the ride is \qquad g's.

Graph It !!: Draw a Speed-Time graph representing the motion of the Pirate (consider the center post) during at least one complete cycle of the ride.

PIRATE SPEED

Engineering Specifications:

Mass of Boat:
Maximum height of center of Boat:
Length of Boat:
Radius of Pendulum:

9500 kilograms
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
13.6 meters
13.1 meters
13.6 meters

The Carrousel

A mild ride for winding down or just taking it easy after some challenging rides.

Questions: Where does a rider experience the greatest centripetal acceleration on this ride: on the horses closest to the center or the ones farthest out? What are the speeds and accelerations of a rider at each position?

Predictions:

(1) A rider experiences the greatest acceleration on the (inner ring, outer
 ring). [Circle one.]
(2) I estimate the acceleration of a rider on the inner ring to be \qquad g's and the acceleration of a rider on the outer ring to be \qquad g's.
Try It !!: You can answer the Questions in two ways. Please use both methods.
From the ground: Using the data in the Engineering Specifications below, calculate the speeds and accelerations of a rider for both the inner ring and the outer ring of horses. To do this, first measure the time it takes for one revolution, T . Then use the following equations to calculate v and a_{c} for each ring. $\mathrm{T}=$ \qquad s

Inner Ring:

$$
v=2 \cdot \pi \cdot r / T=\ldots \mathrm{m} / \mathrm{s} \quad \mathrm{a}_{\mathrm{c}}=\mathrm{v}^{2} / \mathrm{r}=\ldots \mathrm{m} / \mathrm{s}^{2}
$$

Outer Ring:

$$
v=2 \cdot \pi \cdot r / T=\ldots \mathrm{m} / \mathrm{s} \quad \mathrm{a}_{\mathrm{c}}=\mathrm{v}^{2} / \mathrm{r}=\ldots \mathrm{m} / \mathrm{s}^{2}
$$

On the ride: Use the horizontal accelerometer to measure the centripetal acceleration at each position. Be sure the accelerometer is horizontal - you can hold it against the post you hold on to - and aim it toward the center of the circle. Remember: The tangent of the angle gives the number of g 's of acceleration.
a_{c} for the inner ring $=$ \qquad $g^{\prime} \mathrm{s} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
a_{c} for the outer ring = \qquad $g^{\prime} \mathrm{s} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$

Observations/Conclusions: Where did your measurements show the greatest acceleration?

Graph It !!: As you ride further out from the center of the CARROUSEL, the centripetal force, F_{c}, changes. Sketch the graph that shows how the centripetal force varies with the distance from the center of the ride, r.

CENTRIPETAL FORCE ON THE CARROUSEL

Engineering Specifications:

Inner Radius $=5.3$ meters
$\pi=3.14$
Outer Radius $=7.2$ meters

The Wave Swinger

Questions:

(1) What is the speed of a rider on the Wave Swinger?
(2) What amount of centripetal acceleration does the rider experience?

Predictions/Estimations: Choose one ring of swings (inner, middle, or outer) on which to base your predictions.
(1) Watch the ride then estimate the speed of a rider in that ring.

Speed of rider = \qquad m/s
(2) Estimate the centripetal acceleration of a rider (in $\mathrm{g}^{\prime} \mathrm{s}$).

Centripetal Acceleration = \qquad $\mathrm{m} / \mathrm{s}^{2}$

Try It !!:

(I) From the ground: Find the average time for one rotation of the swings (when at full speed). Then, using the data in the Engineering Specifications at the bottom of the next page, calculate the circumference, the speed of a rider, and the rider's acceleration.

Time for 1 revolution $=$ \qquad s Circumference $=2 \cdot \pi \cdot r=$ \qquad m

Speed of a rider $=\mathrm{v}=$ circumference/time for 1 revolution $=$ \qquad m / s

Now, calculate the centripetal acceleration of the rider:

$$
\mathrm{a}_{\mathrm{c}}=\mathrm{v}^{2} / \mathrm{r}=
$$

\qquad $\mathrm{m} / \mathrm{s}^{2}$
(II) From the ground: When the ride is at full speed, use the horizontal accelerometer to measure the centripetal acceleration. Hold the top of the accelerometer parallel to the chains holding the swings. Record the angle measurement below. [To find the acceleration, the angle O equals 90° - your angle measurement.]

Angle measurement = \qquad - Acceleration $=\tan \mathrm{O}=$ \qquad g's

Observations/Conclusions: Were your predictions correct? Is the acceleration a relatively large or small one? How do you decide?

Graph It !!: Draw a rough sketch of the graph that represents how the angle of the swing (from vertical) varies with respect to the speed of the swing around the circle.

SWING ANGLE

Engineering Specifications:

Inner radius $=6.9$ meters
Middle radius $=8.1$ meters
Outer radius $=9.3$ meters

TIDAL FORCE

Have fun riding, but, this is one ride where all measurements are taken from the ground!! Please be sure the accelerometers don't get wet on this ride. Let someone else hold your equipment while you ride.

Question: What is the acceleration of the boat as it is brought to a stop by the water and what is the stopping force applied by the water?
Prediction: Take a guess at how many g's of acceleration the riders undergo as the boat is brought to a stop.

Acceleration at the bottom $=$ \qquad g's

Try It!!: Use the following calculations.
(I) For simplicity, let's assume that the kinetic energy, E_{k}, of the boat at the bottom of the run is equal to the potential energy, $E_{p,}$ of the boat at the top of the hill, we can calculate how fast the boat is moving at the bottom of the hill.

$$
\mathrm{E}_{\mathrm{k}} \text { at the bottom }=\mathrm{E}_{\mathrm{p}} \text { at the top }=\mathrm{m} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}=
$$

$$
v(\text { at the bottom })=\sqrt{ }\left(2 \cdot E_{k} / \text { mass }\right)=
$$

\qquad m/s
(II) Now, we need to time how long it takes for the water to bring the boat to a slow constant velocity. Use the stopwatch to see how long it is from the time the boat just enters the water until the time the boat stops making its big splash.
time $=$ \qquad s
(III) We'll estimate the speed of the boat when it stops splashing to be about $3 \mathrm{~m} / \mathrm{s}$. The acceleration of the boat (and its passengers) will be

$$
a=\frac{3 \mathrm{~m} / \mathrm{s}-\mathrm{v}(\text { at the bottom of the hill) }}{\text { time to stop }}=
$$

\qquad $\mathrm{m} / \mathrm{s}^{2}\left[\div 9.8 \mathrm{~m} / \mathrm{s}^{2}=\right.$ \qquad g's]
(IV) Using the mass of the full boat given in the specs and the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) from \#III above, the stopping force of the water will be

$$
\sum \mathrm{F}=\mathrm{m} \cdot \mathrm{a}=
$$

\qquad

Observations/Conclusions: How many g's of acceleration does the boat undergo? How does the stopping force compare to your weight in N (your weight in pounds $\times 4.45$)?

Graph It!!: Draw the Velocity-Time graph and the Acceleration-Time graph that represents the motion of the boat from the time the splash starts till the time the splash ends. Assume that 'forward' is the $(+)$ direction and the acceleration is uniform.

TIDAL FORCE VELOCITY

TIDAL FORCE ACCELERATION

Engineering Specifications:

Mass of the full boat $=4100 \mathrm{~kg}$ $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ Height of the hill $=30$ meters

The Comet

We know that, under ideal circumstances, the potential plus kinetic energies of a coaster at the top of a hill (using the bottom of the hill as the reference level) will equal the kinetic energy of the coaster at the bottom of that hill. But, again, this is NOT an ideal situation!

Question 1: How does the kinetic energy, E_{k}, of the Comet at the bottom of the first hill compare to its total energy, E_{T}, at the top of the first hill? (The kinetic energy at the top of the hill is not zero, so it must be considered!)

Prediction 1: The E_{k} at the bottom of the ride will be:
(Choose one)
(a) equal to the E_{T} at the top.
(b) about 90% of the E_{T} at the top.
(c) about 60% of the E_{T} at the top.
(d) about 40% of the E_{T} at the top.

Try It !!: We can answer the question as follows.

(I) Total Energy at the top:
(a) First, find the E_{p} of the coaster at the top of the first hill using the data given in the Engineering Specifications. We're choosing the bottom of the hill to be the reference level where $E_{p}=0$ Joules.

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{m} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}=\ldots \text { Joules }
$$

(b) Then, find the kinetic energy, E_{k}, at the top. Determine the speed at the top of the hill by timing how long it takes for the complete length of the coaster train to pass the highest point of the hill then calculate the kinetic energy.
$\mathrm{t}=$ \qquad s
$v=$ length of the train / time $=$ \qquad m / s
$\mathrm{E}_{\mathrm{k}}=.5 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}=$ \qquad Joules
(c) The total energy at the top of the hill, E_{T}, is the sum of the potential and kinetic energies:
$E_{T}=E_{P}+E_{K}=$ \qquad Joules
(II) Kinetic energy at the bottom:

Determine the speed at the bottom of the hill by timing how long it takes for the complete length of the coaster train to pass the lowest point at the bottom of the hill then calculate the kinetic energy.
$\mathrm{t}=$ \qquad S
$\mathrm{v}=$ train length $/$ time $=$ \qquad m / s

$$
\mathrm{E}_{\mathrm{k}}=.5 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}=
$$

\qquad Joules

Observations/Conclusions:

(1) Calculate the percentage. $\left(100 \% \cdot E_{K} / E_{T}\right)$?

How does the E_{k} at the bottom compare to the E_{T} at the top? \qquad
(2) Which prediction was the closest? Was yours?

Question 2: How does the vertical acceleration at the bottom of the second hill compare to the vertical acceleration at the bottom of the first hill?

Prediction 2: The acceleration at the bottom of the second hill will be:
(a) about the same as the acceleration at the bottom of the first hill.
(b) much less than the acceleration at the bottom of the first hill.
(c) much greater than the acceleration at the bottom of the first hill.
(d) a little less than the acceleration at the bottom of the first hill.
(e) a little more than the acceleration at the bottom of the first hill.

Try It !!: Use the vertical accelerometer to find out!
Acceleration at bottom of first hill = \qquad g's
Acceleration at bottom of second hill $=$ \qquad g's

Observations/Conclusions: Which hill had the greater acceleration at the bottom?
Why is this true?

Graph It !!: Sketch a rough graph of the Potential Energy (using a dotted line) and the Kinetic Energy (using a solid line) of the train against the Position of the train along the track. Use the Positions shown on the diagram below. (NOTE: 0 is the top of the first hill.)

COMET ENERGY

Position Number

Engineering Specifications:

Mass of train (full) $=4300 \mathrm{~kg}$
Vertical drop for the first hill $=24.4$ meters

Length of train $=12.2$ meters $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

SOOPERDOOPERLOOPER

We know that, under ideal circumstances, the potential plus kinetic energies of a coaster at the top of a hill (using the bottom of the hill as the reference level) will equal the kinetic energy of the coaster at the bottom of that hill. But, again, this is NOT an ideal situation!

Question 1: How does the kinetic energy, E_{k}, of the LOOPER at the bottom of the first hill compare to its total energy, E_{T} at the top of the first hill? (The kinetic energy at the top of the hill is not zero, so it must be considered!)

Prediction 1: The E_{κ} at the bottom of the ride will be: (Choose one)
(a) equal to the E_{T} at the top.
(b) about 90% of the E_{T} at the top.
(c) about 60% of the E_{T} at the top.
(d) about 40% of the E_{T} at the top.

Try It !!: We can answer the Question as follows.
(I) Total Energy at the top:
(a) First, find the E_{p} of the coaster at the top of the first hill using the data given in the Engineering Specifications. We're choosing the bottom of the hill to be the reference level where $E_{p}=0$ Joules.

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{m} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}=\ldots \text { Joules }
$$

(b) Then, find the kinetic energy, E_{k}, at the top. Determine the speed at the top of the hill by timing how long it takes for the complete length of the coaster train to pass the highest point of the hill then calculate the kinetic energy.

$t=$ \qquad s $v=$ length of the train $/$ time $=$ \qquad m / s

$$
\mathrm{E}_{\mathrm{k}}=.5 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}=
$$

\qquad Joules
(c) The total energy at the top of the hill, E_{T}, is the sum of the potential and kinetic energies:

$$
\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{P}+\mathrm{E}_{\mathrm{K}}=
$$

\qquad Joules
(II) Kinetic energy at the bottom:

Determine the speed at the bottom of the hill by timing how long it takes for the complete length of the coaster train to pass the lowest point at the bottom of the hill then calculate the kinetic energy.

$$
\begin{aligned}
& \mathrm{t}=\ldots \mathrm{v} \\
& \mathrm{E}_{\mathrm{k}}=.5 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}= \\
& \text { Jongth of the train } / \text { time }= \\
& \text { Joules }
\end{aligned}
$$

\qquad m/s
(1) Calculate the percentage. (100 \% • $\mathrm{E}_{\kappa} / \mathrm{E}_{\mathrm{T}}$)? \qquad
How does the E_{k} at the bottom compare to the E_{T} at the top? \qquad
(2) Which prediction was the closest? Was yours? \qquad

Question 2: How many g's of acceleration will you feel
(a) at the bottom of the loop?
(b) at the top of the loop?

Prediction 2: What do you think?
(a) Acceleration at the bottom will be closer to (.5, 1, 2, 3,) g's. (Choose one)
(b) Acceleration at the top will be closer to (.5, 1, 2, 3,) g's. (Choose one)

Try It !!: Use the vertical accelerometer to answer the question. Record your readings below. (HINT: Have your partner yell "NOW" when you are at the bottom and again when you are at the top - it's hard to tell when reading the accelerometer!)
(a) Accelerometer reading at the bottom = \qquad g's
(b) Accelerometer reading at the top $=$ \qquad g's

Observations/Conclusions: Were the readings what you expected? Why or why not?

Graph It!!: Graph the Potential Energy of the coaster against Time from the top of the first hill through the loop to the end of the loop.

Engineering Specifications:

Mass of train (full) $=4300 \mathrm{~kg}$
Length of train $=13$ meters
Height of first hill $=25$ meters

$$
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

The Trailblazer

Question: What is the radius of curvature of the final horizontal loop of this coaster ride?

Prediction: Take a look at the final loop and estimate its radius.

$$
\text { Radius }=
$$

\qquad meters

Try It !!: To answer this Question you'll need to take measurements both on and off the ride. We're going to use the centripetal acceleration equation to find the radius.

(I) From the ground, determine the speed of the coaster as it moves around the final horizontal loop. To do this, pick a point on the loop and measure how long it takes for the full length of the coaster to pass that point. Then, calculate the speed.

$$
\mathrm{t}=\ldots \mathrm{s} \quad \mathrm{v}=\text { length of the train } / \text { time }=\ldots \mathrm{m} / \mathrm{s}
$$

(II) Next, use the vertical accelerometer, holding it perpendicular to the safety bar with the bottom of the tube pointing to the floor, to measure the centripetal acceleration, a_{c}, of the coaster while you are in the final loop.

$$
\mathrm{a}_{\mathrm{c}}=\ldots \mathrm{g} \cdot \mathrm{~s} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=\ldots \mathrm{m} / \mathrm{s}^{2}
$$

(III) The radius of the loop, r, can then be found by

$$
\mathrm{r}=\mathrm{v}^{2} / \mathrm{a}_{\mathrm{c}}=
$$

\qquad meters

Observations/Conclusions: How close was your prediction to the measured value? Which one do you think is right?

Graph It !!: Sketch the graph of the Force on your seat against the Time you are in the horizontal loop at the end of the ride.

FORCE ON THE TRAILBLAZER

Engineering Specifications:

Length of the coaster $=14.6$ meters

The Sidewinder

We know that, under ideal circumstances, the potential plus kinetic energies of a coaster at the top of a hill (using the bottom of the hill as the reference level) will equal the kinetic energy of the coaster at the bottom of that hill. But, again, this is NOT an ideal situation!

Question 1: How does the kinetic energy, E_{k}, of the Sidewinder at the bottom of the starting hill compare to its potential energy, E_{p}, at the top of the starting hill? (Since the Sidewinder begins its run at rest, it has only potential energy at the top.)

Prediction 1: The E_{k} at the bottom of the ride will be: (Choose one)
(a) equal to the E_{p} at the top.
(b) about 70% of the E_{p} at the top.
(c) about 50% of the E_{p} at the top.
(d) about 30% of the E_{p} at the top.

Try It !!: We can answer the Question as follows.
(I) Find the E_{p} of the coaster at the top of the starting hill using the data given in the Engineering Specifications. We're choosing the bottom of the hill to be the reference level where $E_{p}=0 \mathrm{~J}$.

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{m} \cdot \mathrm{~g} \cdot \Delta \mathrm{~h}=
$$

\qquad Joules
(II) First, determine the speed at the bottom of the hill by timing how long it takes for the complete length of the coaster train to pass a point at the bottom of the hill (just where the track begins to level off) then calculate the kinetic energy.

$$
\mathrm{t}=
$$

\qquad s $v=$ length of the train / time $=$ \qquad m / s
$\mathrm{E}_{\mathrm{k}}=.5 \cdot \mathrm{~m} \cdot \mathrm{v}^{2}=$ \qquad Joules

Observations/Conclusions:

(1) Calculate the percentage. (100 \% • $\mathrm{E}_{\mathrm{k}} / \mathrm{E}_{\mathrm{p}}$)?

How does the E_{K} at the bottom compare to the E_{p} at the top? \qquad
(2) Which prediction was the closest? Was yours? \qquad
\qquad

Question 2: The critical speed for an object moving in a vertical loop is the slowest speed the object can be moving at the top of the loop and not fall out. At this speed the rider would feel weightless (no pressure on your seat). When in the loop of the Sidewinder, is the coaster moving at the critical speed or higher? If higher, how many g's of acceleration do you think the rider is experiencing?

Prediction 2: The coaster is moving (at, faster than) the critical speed. (Choose one.)
If 'faster than' how many g's do you think you'll experience? \qquad g's

Try It !!: The easiest way to check this out is to measure it using the vertical accelerometer. (HINT: Have your partner yell 'NOW' when you are at the top of the ride - it's hard to tell when reading the accelerometer!)

Observation/Conclusion: What did you find out? \qquad

Graph It !!: Sketch a graph below that shows the Kinetic Energy of the coaster as it travels backwards from the high point of the second lift through the loop to the end of the loop.

Engineering Specifications:

Height of the second hill: 35.5 meters
Mass of the full train: 8260 kg
Length of train: 18.3 meters
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

The Wildeat

Named after the first roller coaster at HERSHEYPARK, this wooden coaster twists its way through or over itself 20 times during the ride.
Question 1: What is the average speed of the Wildcat from the time the coaster starts down the first hill until the time when the brakes are first applied at the end of the ride?

Prediction 1: NOTE MAKE THIS PREDICTION AFTER YOU HAVE RIDDEN
THE COASTER!! THEN TAKE YOUR MEASUREMENTS FROM THE GROUND JUST TO SEE HOW WELL YOUR PERCEPTIONS COMPARE TO THE ACTUAL SPEED.

The average speed of the ride seems to be about:
(a) 10 miles/hour (almost $5 \mathrm{~m} / \mathrm{s}$)
(b) $20 \mathrm{miles} /$ hour (about $9 \mathrm{~m} / \mathrm{s}$)
(c) $40 \mathrm{miles} /$ hour (about $18 \mathrm{~m} / \mathrm{s}$)
(d) $60 \mathrm{miles} /$ hour (about $27 \mathrm{~m} / \mathrm{s}$)
(e) $80 \mathrm{miles} / \mathrm{hour}$ (about $36 \mathrm{~m} / \mathrm{s}$)

Try It!!: From the ground, use a stopwatch to measure the time of the ride from the time the coaster starts down the first hill until the time when the brakes are first applied at the end of the ride. Find the average speed of the ride using the equation below. (See the Engineering Specifications.)

Time $=$ \qquad
Average Speed $=$ Distance traveled $/$ Time $=$ \qquad $=$ \qquad m / s

Observations/Conclusions: How did your prediction compare to the actual measurement of the ride's average speed? If there was a difference between the two, explain why you think this might happen.

Question 2: While standing in line, you'll notice that the coaster stops at the end of the ride by applying the brakes a number of times. What is the maximum stopping acceleration (in g 's) that the coaster undergoes during braking?
Prediction 2: You can make your estimate by comparing what you see while standing in line to what you've experienced in a car that comes to a quick normal stop which is about 0.7 ($\mathrm{g}^{\prime} \mathrm{s}$).

The maximum stopping acceleration for the coaster is about \qquad g's.

Try It!!: Before reaching the end of the ride, set the horizontal accelerometer firmly and horizontally on the lap bar with the 80° facing forward. As the car goes through the braking process, note the maximum angle to which the beads rise. The tangent of this angle is the acceleration (in g's).

The maximum stopping acceleration on the ride is \qquad g's.

Observations/Conclusions: How did your prediction compare to the actual meter reading? Explain any differences.
\qquad
\qquad

Graph It!!: Sketch a Speed-Time graph that shows how the speed of the coaster varies during the braking process.

THE WILDCAT STOPS!

Engineering Specification:

Ride length from top of 1 st hill to where brakes first applied $=775$ meters

GREAT BEAR

The constellation, Ursa Major (the Great Bear), can be identified in the night sky by the seven bright stars which most of us know as the Big Dipper. GREAT BEAR the ride, is also characterized by seven major features along with an awesome growl that adds to the excitement of the ride. Two of these features, the 360° rolls, will be focus of this activity.

As you stand on the ground by the Wave Swinger, you can observe the first roll that GREAT BEAR undergoes. Walk over by the SOOPERDOOPERLOOPER to see the second roll the riders experience on GREAT BEAR. In both cases, the riders' bodies move in a circular path around the track as they move forward. The seat of the ride provides a centripetal force to keep the rider moving in the circular path.

Questions:

1. What is the maximum amount of centripetal acceleration the rider experiences within the rolls?
2. Will the centripetal acceleration in the first roll be greater than, less than, or equal to the acceleration in the second roll?

Prediction:

1. The maximum amount of centripetal acceleration the rider feels will be: (choose one)
1 g
2 g's
3 g 's
4 g's
2. The centripetal acceleration in the first roll will be Greater Than Less Than Equal To the acceleration in the second roll. (choose one)

Try It!!: We'll answer both questions at the the same time, first by doing calculations from the ground and then, by using the accelerometer while on the ride.
From the ground: Stand in a position where you can observe GREAT BEAR's first roll. Measure the time it takes for the front seats to make the complete roll (from the time it is hanging straight down as it starts the roll until it is hanging straight down again at the end of the roll). Take this reading at least five times and record the average of your measurements below. Follow the same procedure for the second roll and record your results below.

Time interval for the first roll: \qquad s Time interval for the second roll: \qquad s

Next we'll calculate the tangential speed, v, and centripetal acceleration, a_{c}, for the two rolls.
NOTE: Use the Radius of Roll 1 (2.1 meters).
First Roll:

$$
\begin{gathered}
v=2 \cdot \pi r_{1} / T=\ldots \mathrm{m} / \mathrm{s} \\
a_{c}=v^{2} / r_{1}=\left[\mathrm{m} / \mathrm{s}^{2} \div 9.8 \mathrm{~m} / \mathrm{s}^{2}=\square\right.
\end{gathered}
$$

NOTE: Use the Radius of Roll 2 (2.1 meters)
Second Roll:

$$
v=2 \cdot \pi r_{2} / T=\ldots \mathrm{m} / \mathrm{s}
$$

$$
a_{c}=v^{2} / r_{2}=\quad \mathrm{m} / \mathrm{s}^{2} \div 9.8 \mathrm{~m} / \mathrm{s}^{2}=
$$

\qquad g's

On the Ride: Use the vertical accelerometer to measure the maximum acceleration you feel while in the two rolls. Remember to place the rubber band restraint around your wrist to keep the accelerometer from falling - it could be very dangerous to others on the ride! Have your partner yell "NOW!" just before you are starting each roll so you can keep your eyes on the accelerometer. You may have to do this activity more than once!! Record your maximum readings for the rolls below.

Maximum Acceleration for Roll 1: \qquad g's

Maximum Acceleration for Roll 2: \qquad g's
Observations/Conclusions:

1. How do the accelerations for the two rolls compare? Use your calculations and the accelerometer readings to back up your answers.
2. How do the calculations for Roll 1 compare to the maximum accelerometer readings for Roll 1? Should they be equal? If not, why? (HINT: Check part II B for the Pirate activity.)

Graph It!!: Just after going through the GREAT BEAR loop, you travel around a structure called an Immelmann. Draw a rough bar graph that represents the vertical forces (with respect to your seat) that you feel as you move upward (Position 1 on the graph), across the top (Position 2), then downward (Position 3) in the Immelmann.

Engineering Specifications:

Radius of the first roll (Roll 1):
2.1 m

Radius of the second roll (Roll 2):
2.1 m

The Wild Mouse

The Wild Mouse is a deceptively exciting ride! From the ground the car seems to be moving at a relatively slow speed - and it is, compared to the speeds of most coasters. But, the screaming of the passengers as they progress through the ride provides a clue to the thrills that you'll experience. For this activity, we'll concentrate on the series of switchbacks at the top of the ride.

NOTE: FOR COMFORT (AND SAFETY) YOU MAY WANT TO TAKE A TEST RIDE TO SEE WHAT CHALLENGES YOU'LL HAVE IN MAKING THESE MEASUREMENTS.

Question: When moving along the curves at the top of The Wild Mouse (the switchbacks), the riders feel as if they are going to fall over the edge. How many " g ' s " of centripetal acceleration are the riders experiencing as
 they make these turns?

Prediction: The riders will be feeling ($0.5,1.0,1.5,2.0$, greater than 2.0) g 's of acceleration as they whip around the switchback curves. (choose one).

Try It!!: We'll determine the centripetal acceleration in two different manners.
A. On the ride: place the horizontal accelerometer on a level surface (maybe, on the lap bar?) with the $\mathbf{8 0 ^ { \circ }}$ mark facing toward the right side of the car. Before reaching the turns, note which of the three BB's is on the 0° mark when the accelerometer is level. As you go around each lefthand curve at the top of the ride (the switchback sections), note the maximum angle reading that the $B B$ reaches. Record these measurements below and determine the centripetal acceleration in g's.

1st left-hand turn reading: $\theta=$ \qquad。

Centripetal Acceleration, $\mathrm{a}_{\mathrm{c}}=\tan \theta=$ \qquad g's

2nd left-hand turn reading: $\theta=$ \qquad $-$

Centripetal Acceleration, $\mathrm{a}_{\mathrm{c}}=\tan \theta=$ \qquad g's

3rd left-hand turn reading: $\theta=$ \qquad $-$

Centripetal Acceleration, $\mathrm{a}_{\mathrm{c}}=\tan \theta=$ \qquad g's
B. From the ground: Determine the beginning and end of the half-circle that the car makes as it goes around a turn. Using the radius given in the Engineering Specifications below, calculate the distance traveled by the car for the half-circle.

Distance around the half-circle $=2 \cdot \pi r=$ \qquad meters

Use the stop watch to determine the time it takes for the car to traverse the half-circle. Take at least three trials. Record the average reading below and calculate the speed of the car for the turn. Then calculate the centripetal acceleration.

Time to travel the half-circle (t) $=$ \qquad seconds

Speed of the car (v) = Distance around the half-circle \div Time $=$ \qquad m / s

Centripetal Acceleration $\left(\mathrm{a}_{\mathrm{c}}\right)=\mathrm{v}_{2} / \mathrm{r}=$ \qquad $\mathrm{m} / \mathrm{s}_{2}$

Observations/Conclusions:

(a) How do the centripetal accelerations in parts (A) and (B) compare?
(b) Do all three turns create the same accelerations?
(c) How does the numerical result compare to how you feel on the ride?

Graph It!!: Draw a rough graph below showing the actual speeds (with a solid line) for each of the turns of the switchback section AND the speeds you think you are going (with a dotted line).

Mousey Turns???

Combine the slowly rotating platform of the Carrousel with the pendulum motion of the PIRATE ship and you have THE CLAW. The interplay of motions on this ride provides a unique combination of sensations.

Questions:

(1) At what point (or points) in the ride will your seat apply the greatest "upward" force against your bottom? How many g's of acceleration will you feel when this happens?
(2) Knowing where the greatest upward force occurs, in what direction are you moving and in what direction is the centerpost of THE CLAW moving?
(3) How does the potential energy of THE CLAW at the top of the swing, compare to its kinetic energy at the bottom of the swing?
(4) What is the centripetal acceleration of THE CLAW (as a whole) when it is at the bottom of its swing? How does this compare with your accelerometer readings from Question 1?

Predictions: (1) I will feel the greatest "upward" force when the ride is (at its highest point in the swing, at its lowest point in the swing, at the halfway points) and the acceleration at this time will be closer to (. 5 g 's - I'll feel as if I weigh less than may normal weight; $1.0 \mathrm{~g}-\mathrm{I}$ 'll feel as if I weigh my normal weight; 2 g's, 3 g's - I'll feel as if I weigh 2 or 3 times my normal weight). Write your two choices on the line below.
(2) The greatest "upward" force occurs when the rotation of the ride (makes me move in the same direction as the centerpost is swinging, makes me move opposite to the direction that the centerpost is swinging). Write your choice below.
(3) The potential energy of THE CLAW, at the top of the swing is (less than, greater than, equal to) its kinetic energy at the bottom of the swing. Write your choice below.
(4) The calculated accelerations will be ($>,<,=$) the actual readings from the accelerometer.

Try It !!: (1) and (2) You'll have to answer Questions 1 and 2 while on the ride. You'll need the vertical accelerometer to take measurements and a partner. Before the ride begins, hold the accelerometer vertically (with both hands, if you can). Hold it this way for the duration of the ride. After THE CLAW has begun its swinging motion, watch the accelerometer to see when it reaches its greatest reading. You will have to let your partner know when the greatest readings occur, so that your partner can watch to see where, in the the swing, that this is happening.
(1) Maximum Acceleration: \qquad g's occurs as \qquad
(2) Direction you are moving during maximum acceleration:
(3) Determine the potential energy $\left(E_{\rho}\right)$ at the top:

$$
\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}=
$$

\qquad J (Use the average height of the ride below)
(4) Determine the average speed of the ride at the bottom by timing how long it takes for the carousel to cross the imaginary center line of the ride at the bottom of the swing and dividing the diameter of the carousel by the time. (See specifications on other side.)

Average speed $=$ Diameter $/$ Time to pass $=$ \qquad m / s

Calculate the average kinetic energy, E_{k}, from the average speed calculated above:
$\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{~m} \mathrm{v}^{2}=$ \qquad -
(5) Calculate the centripetal acceleration of a rider at the bottom of the swing using the average speed calculated above:
$\mathrm{a}_{\mathrm{C}}-\mathrm{v}^{2} / \mathrm{r}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$ (" r " is the swing radius - see below.)

The accelerometer readings will be 1 g greater than the centripetal acceleration because the accelerometer will read 1 g when the ride is stopped. So how does the maximum acceleration measured in \#1 compare to the calculated value above?

Observations/Conclusions:

(1) Why did you feel the maximum acceleration where you did? Your explanation MUST be supported by your findings in \#1 and 2.
\qquad
(2) Give your best guess as to why the EP at the top of the swing and the EK at the bottom of the ride compared as they did.
\qquad
(3) Give your best guess as to why the calculated centripetal acceleration and the measured accelerometer readings compared as they did.

Graph It!! Roughly sketch the accelerations that you undergo during a full period of the ride at maximum swing.

Specifications:

Mass of ride (loaded): \qquad
Average max. height of Carousel: \qquad
Diameter of Carousel: \qquad m

Swing Radius: \qquad m

Storm Runner

For safety reasons, no data collection devices will be allowed on this ride.

Two of the most impressive aspects of STORM RUNNER are its takeoff and the 46 meter (150 foot) vertical ride to the peak of the "top hat"!

Questions:

(1) What is the initial acceleration of the ride?
(2) What is the minimum power the launch-
ing mechanism must expend? ("Minimum" because, due to friction, the motors must expend even more power!)
(3) How does the total energy of the coaster at the top of the "top hat" compare to its total energy at the end of the initial acceleration?

Predictions: (1) The rider will feel an acceleration closest to \qquad -
(a) .5 g 's
(b) 1.0 g s
(c) $1.5 \mathrm{~g} / \mathrm{s}$
(d) 2.0 g 's
(e) $2.5 \mathrm{~g} / \mathrm{s}$
(2) The minimum power expended by the launcher is \qquad .
(a) 1000000 J
(b) 2000000 J
(c) 3000000 J
(d) 10000000 J .
(3) The Etotal at the peak of the "top hat" should be ($>,<$, or $=$) the Etotal at the bottom of the "top hat". (choose one) \qquad
(4) The calculated accelerations will be ($>,<,=$) the actual readings from the accelerometer.

Try It !!: (1) You will have to find a place where yoU can watch the train's initial acceleration from rest to its maximum speed (maybe while in line?). Use a stopwatch to measure the time for this acceleratioon from the start to the bottom of the "top hat" (just bevore it starts its upward climb).

Make 5 measurements - average the best three (the most consistent ones).
Time for the acceleration: $\mathrm{t}=$ \qquad s
Find the average velocity for the train. The train's displacement, Δx, along the horizontal parrt of the track is given in the specifications at the end.
$\overline{\mathrm{v}}=\frac{\Delta \mathrm{x}}{\mathrm{t}}=$
$=$ \qquad m / s

The initial velocity is $0 \mathrm{~m} / \mathrm{s}$. So, we can find the velocity by using another average velocity equation, assuming uniform acceleration: $\bar{v}=\frac{v_{i}+v_{f}}{2}$
Determing vf. $\mathrm{v}^{\mathrm{f}}=$ \qquad m / s.

Finally, we can find the acceleration: $a=\frac{v_{f}+v_{i}}{t}$. Calculate the acceleration.
$\mathrm{a}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$.

Divide the acceleration by $9.8 \mathrm{~m} / \mathrm{s}^{2}$ to put thhis number into " g ' s "
$\mathrm{a}=$ \qquad g's
(2) First, we have to figure out the kinetic energy (E_{k}) gained by the coaster during takeoff. Since the Power used is equal to the rate at which the Work is done by the motors, and the gain in kinetic energy is equal to the amount of Work done by the motors, we can calculate the Power used by dividing the change in E_{k} by the time during which the work occurred. We measured this time in the previous section.

The change in $E_{k}=1 / 2 \mathrm{mv}^{2}=$ \qquad (since E_{k} is initially zero.)
Power $=$ Work/time $=$
/ = \qquad watts
Convert the power to horsepower. There are 746 watts in 1 horsepower.
\qquad watts = \qquad hp
(3) Since you already know the velocity of the coaster at the bottom of the "top hat", you can calculate the kinetic energy. The potential energy will be 0 J if we consider the starting height to be 0 m . So, the total energy at the bottom is
$E_{k}=1 / 2 m v^{2}=$ \qquad J $\mathrm{E}_{\text {тотад }}$ AT BOTTOM
At the top, you'll have to calculate both the potential and kinetic energies (since the coaster is moving at the top).
$\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}=$ \qquad J

To get the speed of the coaster at the top, we can time how long it takes for the coaster to pass the peak of the "top hat". Then,
$v=$ length of the coaster/time to pass = \qquad m/s
$\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{~m} \mathrm{v}^{2}=$ \qquad J
$\mathrm{E}_{\text {Total }}=\mathrm{E}_{\mathrm{p}}$ (at the top) $+\mathrm{E}_{\mathrm{K}}$ (at the top) $=$ \qquad J $\mathrm{E}_{\text {Total }}$ AT THE TOP

Observations/Conclusions:

(1) Some of the best standard automobiles can reach accelerations of about .8 g 's to .9 g 's. How does STORM RUNNER compare?
(2) Most of our cars have power ratings in the neighborhood of 90 to 200 horsepower. How many cars could be powered during one of the launches of STORM RUNNER?
(3) How do the total energies at the bottom and the peak of the "top hat" compare? Explain these results.

Specifications:

Horizontal Run during Takeoff (just before release): \qquad m

Length of Train: 11,984 millimeters
Height of "Top Hat": 45.7 m

Ride Measurements

CARROUSEL	ENGLISH	METRIC
Radii	25^{\prime}	7.62 m
Inner horse	$17^{\prime} 5^{\prime \prime}$	5.31 m
Middle horse	$20^{\prime} 5^{\prime \prime}$	6.22 m
Outer	$23^{\prime} 6^{\prime \prime}$	7.16 m
Total ride time	2 minutes	2 minutes
Single rotation time	11 seconds	11 seconds

COMET	ENGLISH	METRIC
Height of first hill	84'2'	25.65 m
Height of valley	4'0"	1.22 m
Height of second hill	70'-6 1/2"	21.5 m
Horsepower of chain motor	75	55950 watts
Area of front of car	8.6 sq. ft.	. $80 \mathrm{~m}^{2}$
Length of coaster train	$40^{\prime} 0^{\prime \prime}$	12.19 m
Riders each hour	1,100	1,100
Average speed	27 ft ./sec.	$8.23 \mathrm{~m} / \mathrm{s}$
Minimum speed	66 ft ./sec.	$20.12 \mathrm{~m} / \mathrm{s}$
SECOND MAJOR CURVE: Radius	35'	10.67 m
Degrees	87 degrees	87 degrees
Entering height	$54^{\prime} 2^{\prime \prime}$	16.51 m
Exit height	50'11"	15.52 m
Minimum ride height	42"	1.07 m
Ride capacity	24 a train/2 trains	24 a train/2 trains
Round trip distance	2,950'	899.1 m
Round trip time	1 min .49 sec .	1 min .49 sec .
Mass of train	6,200 lbs. empty/9,500 lbs. full $2812 \mathrm{~kg} / 4309 \mathrm{~kg}$	

NOTE: Average weight is 150 lbs . (68.04 kg) per rider.

GREAT BEAR	ENGLISH	METRIC
Mass of train	$22,400 \mathrm{lbs}$.	10 ton
Length of train	$39^{\prime} 2^{\prime \prime}$	11.937999 m
Distance from wheels to bottom of seat	6.5 ft.	1.9812 m
Distance of track	$2,800^{\prime}$	853.44 m
Height of loop (Top of Loop)	106^{\prime}	32.3088 m
Height of loop (Bottom of Loop)	31^{\prime}	9.4488 m
Height of first hill	$11^{\prime} 6^{\prime \prime}$	36.500652 m
Height at the bottom of first hill	$10^{\prime} 4^{\prime \prime}$	3.1490917 m
Distance around loop - beginning and ending at the same point	$187^{\prime} 6^{\prime \prime}$	57.15 m

PIRATE	ENGLISH	METRIC
Horsepower of swing engine	100 hp	74600 watts
Riders each hour	1,200	1,200
Maximum swing angle	75 degrees	75 degrees
Ride capacity	54 adults	54 adults
Round trip time	$11 / 2-3$ min. a ride	$11 / 2-3 \mathrm{~min}$. ride
Mass of boat	$14,300 \mathrm{lbs} . \mathrm{empty} / 21,050 \mathrm{lbs}$. full	$6486 \mathrm{~kg} / 9548 \mathrm{~kg}$
Length of boat from tip of needle to stern	$43^{\prime \prime} 0^{\prime \prime}$	13.1 m
Maximum height of center of boat	$44^{\prime \prime} 6^{\prime \prime}$	13.6 m
Radius swing (center fulcrum down center of boat)	$44^{\prime \prime} 6^{\prime \prime}$	13.6 m

NOTE: Average weight is 150 lbs (68.04 kg) per rider.

SIDEWINDER	ENGLISH	METRIC
Height of hill (is it the same on both ends?)	$121^{\prime} 1^{\prime \prime}:$ Lift $1 \quad 116^{\prime} 5^{\prime \prime}:$ Lift 2	$36.90 \mathrm{~m} / 35.48 \mathrm{~m}$
Vertical drop of first hill	$121^{\prime} 1^{\prime \prime}$	36.90 m
Vertical drop of second hill	$116^{\prime} 5^{\prime \prime}$	35.48 m
Mass of train	$14,000 \mathrm{lbs}$. empty $/ 18,200 \mathrm{lbs}$. full	$6350 \mathrm{~kg} / 8255 \mathrm{~kg}$
Length of train	60^{\prime}	18.29 m
Total ride time	1 min .40 sec.	1 min .40 sec.

SOOPERDOOPERLOOPER	ENGLISH	METRIC
Height of first hill	$81^{\prime} 0^{\prime \prime}$	24.69 m
Angle of first drop - steepest	varies- 38 degrees	varies- 38 degrees
Height of loop	53^{\prime}	16.15 m
Height of second hill	$64^{\prime} 0^{\prime \prime}$	19.51 m
Horsepower of chain motor	100 hp	74600 watts
Weight of coaster loaded	$9,400 \mathrm{lbs}$.	4264 kg
Weight of coaster empty	$8,000 \mathrm{lbs}$.	3629 kg
Chain speed	$6-8 \mathrm{ft} . / \mathrm{sec}$.	$2.07 \mathrm{~m} / \mathrm{s}$
Length of train	$42^{\prime} 6^{\prime \prime}$	12.95 m
Round trip time	1 min .57 sec.	1 min .57 sec.
Frontal area of train	$9.3 \mathrm{sq} . \mathrm{ft}$.	$.86 \mathrm{~m} / \mathrm{s}$
Riders each hour	850	850
Average speed	$22.34 \mathrm{ft} / sec.$.	$6.81 \mathrm{~m} / \mathrm{s}$
Minimum speed	$0-2 \mathrm{ft} / sec.$.	$0-.61 \mathrm{~m} / \mathrm{s}$
Minimum rider height	$54^{\prime \prime}$	1.37 m
Rider capacity	$24 \mathrm{a} \mathrm{train} / 2 \mathrm{trains}$	$24 \mathrm{a} \mathrm{train} / 2 \mathrm{trains}$
Round trip distance	2614.8^{\prime}	797 m

TIDAL FORCE	ENGLISH	METRIC
Mass of boat	$6,000 \mathrm{lbs}$. empty $/ 9,000 \mathrm{lbs}$. loaded	$2722 \mathrm{~kg} / 4082 \mathrm{~kg}$
Number of riders	$20 /$ boat -3 boats	$20 /$ boat -3 boats
Length of boat	$18^{\prime} 9^{\prime \prime}$	5.71 m
Height of lift	100^{\prime}	30.5 m
Vertical drop	100^{\prime}	30.5 m

TRAILBLAZER	ENGLISH	METRIC
Height of hill	$52^{\prime} 0^{\prime \prime}$	15.85 m
Height of valley	$18^{\prime} 0^{\prime \prime}$	5.49 m
Height of loading aea	$10^{\prime} 0^{\prime \prime}$	3.05 m
Horsepower of chain motors	50 hp	37300 watts
Weight of coaster	$4,000 \mathrm{lbs} . \mathrm{empty} / 8,500 \mathrm{lbs}$. loaded	$1814 \mathrm{~kg} / 3856 \mathrm{~kg}$
Areas of front of car	$10.3 \mathrm{sq} . \mathrm{ft}$.	$.96 \mathrm{~m}^{2}$
Riders each hour	1400	1400
Average speed	$175 \mathrm{ft} . / \mathrm{sec}$.	$53.34 \mathrm{~m} / \mathrm{s}$
Ride capacity	30 per train	30 per train
Round trip distance	1890^{\prime}	576 m
Length of coaster	$48^{\prime} 0^{\prime \prime}$	14.63 m
Measured radius of horizontal loop	$36^{\prime} 0^{\prime \prime}$	10.97 m

NOTE: Average weight is 150 lbs . (68.04 kg) per rider.

WILDCAT	ENGLISH	METRIC
Mass of train	$11,400 \mathrm{lbs}$.	5171 kg
Length of train	$42^{\prime} 6^{\prime \prime}$	12.95 m
Radius of first turn (the one you can see best)	$43^{\prime} 6^{\prime \prime}$ (Turn 3)	13.26 m
Round trip distance	3100^{\prime}	944.8 m
Radius of horizontal circle (in the cylcone somewhere?)	$61^{\prime}($ Turn 9$)$	18.59 m
Number of riders per train	24	24
Vertical drop of first hill(?)	85^{\prime}	25.91 m

Building a Force Meter

OM Sclextllu Axs:RHAN

 rimber wile riditus in roller

 ог еуел з trip in ал eltwator.

Measuring G Forces on a Swing

 !n -11. $\cdot 11!1!?$

I 6 13
 spal|

